Ancient bacteria go under the lens

Oct 23, 2013 by Angela Herring
Associate professor Jacqueline Piret and former graduate student Desislava Raytcheva are working to better understand a virus that infects—and thus helps control—cyanobacteria.Credit: Brooks Canaday

Every fourth breath you take comes from cyanobacteria, which populate the planet's waters. Progenitors of these microscopic, photosynthetic organisms are believed to have been the first organisms to release oxygen into the atmosphere. Their evolution nearly 3 billion years ago is thought to have enabled all aerobic life on Earth.

But the same process that accounts for one quarter of the planet's breathable oxygen has also turned cyanobacteria into one of the most poorly controlled forms of water pollution, experts say. Rising ocean temperatures and acidity have led to devastating blooms of marine cyanobacteria around the globe, overwhelming other native species.

Despite these problems, researchers still don't have an easy way of studying cyanobacteria through genetic analysis, according to Jacqueline Piret, an associate professor of molecular microbiology. Piret recently co-authored a research paper on the subject in the journal Nature along with former student Desislava Raytcheva and colleagues at the Massachusetts Institute of Technology and the Baylor College of Medicine.

To overcome these challenges, the research team is investigating a virus called Syn5, which infects a cyanobacterial species. "A bacteriophage virus offers an opportunity to engineer a vector for carrying out genetic manipulation in the host organism," Piret explained. By tweaking the host genome through controlled viral infection, the researchers can tease out the functions of particular genes, such as those involved in the harvest of light energy for photosynthesis.

But in order to use the bacteriophage to their advantage, Piret's team first needed to understand its structure and behavior, as it was still unclear how the virus assembled and went on to infect its host.

For her doctoral dissertation, Raytcheva used painstaking experimental techniques to work out Syn5's structure, which turned out to be rather unique in that it has a horn protruding from the ' exterior shell. "Very few other viruses are known to have a similar structure," she explained.

In 2009, the researchers at Northeastern and MIT began collaborating with their colleagues at Baylor College of Medicine, which had developed an advanced microscopy technique. The method allowed them to see in almost real-time and with striking clarity the Syn5 that Raytcheva had pieced together.

Piret noted that the imaging data complements Raytcheva's work, pointing to the two-pronged approach to get to the assembly process. "You need physical evidence," she said, "and then you need biochemical information about the intermediates."

This work is an important step toward understanding how cyanophages infect and assemble inside their hosts. That knowledge, said Raytcheva, will be critical for developing methods for both studying and controlling .

Explore further: Team discovers new form of virus reproduction

More information: www.nature.com/nature/journal/vaop/ncurrent/full/nature12604.html

Related Stories

Team discovers new form of virus reproduction

Oct 17, 2013

Each small step that Science takes to discover how viruses infect cells is always very valuable to researchers and society, since it provides relevant information to fight infections.

Multicellularity: A key event in the evolution of life

Jan 16, 2013

(Phys.org)—Multicellularity in cyanobacteria originated before 2.4 billion years ago and is associated with the accumulation of atmospheric oxygen, subsequently enabling the evolution of aerobic life, as ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

2 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

3 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

22 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

23 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

User comments : 0

More news stories

Fear of the cuckoo mafia

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...