Alternative to antibiotics: Plasmas attack bacterial cells on several levels

Oct 01, 2013
Plasma reactor: The RUB team generates atmospheric-pressure plasmas and tests which effects UV radiation and reactive particles have on bacterial cells and molecules. Credit: © RUB, Foto: Jan-Wilm Lackmann

As they destroy bacteria very efficiently, plasmas constitute an alternative to chemical disinfectants and potentially to antibiotics, as well. How they achieve this effect has been investigated by biologists, plasma physicists and chemists at the Ruhr-Universität (RUB). Cold atmospheric-pressure plasmas attack the prokaryote's cell envelope, proteins and DNA.

"This is too great a challenge for the repair mechanisms and the stress response systems of bacteria," says Junior Professor Dr Julia Bandow, Head of the Junior Research Group Microbial Antibiotic Research at the RUB. "In order to develop plasmas for specific applications, for example for treating chronic wounds or for root canal disinfection, it is important to understand how they affect cells. Thus, undesirable side effects may be avoided right from the start." The team reports in the Journal of the Royal Society Interface.

Plasmas affect cell envelope, DNA and proteins

Depending on their specific composition, plasmas may contain different components, for example ions, radicals or light in the ultraviolet spectrum, so-called UV photons. Until now, scientists have not understood which components of the complex mixture contribute to which extent to the antibacterial effect. Julia Bandow's team has analysed the effect of UV photons and reactive particles, namely radicals and ozone, on both the and on the level of single biomolecules, namely DNA and proteins. On the cellular level, the reactive particles alone were most effective: they destroyed the cell envelope. On the molecular level, both plasma components were effective. Both UV radiation and reactive particles damaged the DNA; in addition, the reactive particles inactivated proteins.

No effective antibiotics in ten years' time?

Atmospheric-pressure plasmas are already being used as surgical tools, for example in nasal and intestinal polyp extraction. Their properties as disinfectants may also be of interest with regard to medical applications. "In ten years, bacteria might have developed resistance against all antibiotics that are available to us today," says Julia Bandow. Without , surgery would become impossible due to high infection rates.

Explore further: Making industrial plasma safer

More information: J.-W.Lackmann, S. Schneider, E. Edengeiser, F. Jarzina, S. Brinckmann, E. Steinborn, M. Havenith, J. Benedikt, J.E. Bandow (2013): Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically, Journal of the Royal Society Interface, DOI: 10.1098/rsif.2013.0591

add to favorites email to friend print save as pdf

Related Stories

Plasma therapy: An alternative to antibiotics?

Dec 15, 2010

Cold plasma jets could be a safe, effective alternative to antibiotics to treat multi-drug resistant infections, says a study published this week in the January issue of the Journal of Medical Microbiology.

Redefining 'clean'

Oct 31, 2011

Aiming to take "clean" to a whole new level, researchers at the University of California at Berkeley and the University of Maryland at College Park have teamed up to study how low-temperature plasmas can deactivate potentially ...

Making industrial plasma safer

Sep 18, 2013

(Phys.org) —EPFL scientists have uncovered the physics behind the formation of plasmoids – funnel-like, high-energy plasmas that can severely damage industrial plasma reactors, causing millions in repairs ...

Recommended for you

New tool aids stem cell engineering for medical research

7 hours ago

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

New type of cell movement discovered

7 hours ago

For decades, researchers have used petri dishes to study cell movement. These classic tissue culture tools, however, only permit two-dimensional movement, very different from the three-dimensional movements ...

How the zebrafish gets its stripes

7 hours ago

The zebrafish, a small fresh water fish, owes its name to a striking pattern of blue stripes alternating with golden stripes. Three major pigment cell types, black cells, reflective silvery cells, and yellow ...

User comments : 0