Wormlike hematite photoanode breaks the world-record for solar hydrogen production efficiency

Sep 25, 2013
This is aSchematic Diagram of PEC cell with wormlike hematite photoanode. Credit: UNIST

A research team of Ulsan National Institute of Science and Technology (UNIST), South Korea, developed a "wormlike" hematite photoanode that can convert sunlight and water to clean hydrogen energy with a record-breaking high efficiency of 5.3%.

This research was published in Scientific Reports, a science journal published by the Nature Publishing Group.

The previous record of efficiency among stable oxide semiconductor photoanodes was 4.2% owned by the research group of Prof. Michael Graetzel at the Ecole Polytechnique de Lausanne (EPFL), Switzerland.

Solar is a renewable and sustainable energy production method because it can utilize sunlight, the most abundant energy source on earth, and water, the most abundant natural resource on earth. At the moment, low solar-to-hydrogen conversion efficiency is the most serious hurdle to overcome in the commercialization of this technology.

The key to the solar water splitting technology is the semiconductor photocatalysts that absorb sunlight and split water to hydrogen and oxygen using the absorbed solar energy. Hematite, an iron oxide (the rust of iron, Fe2O3) absorbs an ample amount of sunlight. It has also excellent stability in water, a low price, and environmentally benign characteristics.

Thus it has been a most popular and promising candidate of photoanode material for solar water splitting over the last two decades. However, hematite has a major and critical drawback of an extremely poor electrical conducting property. Thus most of the hematite anodes have exhibited very low performance.

Prof. Jae Sung Lee of UNIST led the joint research with Prof. Kazunari Domen's group at the University of Tokyo, Japan, developing new which has outstanding efficiency.

Prof. Lee and coworkers employed a series of modifications to improve the property of hematite. First, a unique single-crystalline "wormlike" morphology was produced by using a nanomaterial synthesis technique. Second, a small amount of platinum was introduced into the hematite lattice as doping. Finally, a cobalt catalyst was employed to help oxygen evolution reaction. These modifications reduced energy loss due to charge recombination and brought the record-breaking solar-to-hydrogen .

"The efficiency of 10% is needed for practical application of solar water splitting technology. There is still long way to reach that level. Yet, our work has made an important milestone by exceeding 5% level, which has been a psychological barrier in this field," said Prof. Lee. "It has also demonstrated that the carefully designed fabrication and modification strategies are effective to obtain highly efficient photocatalysts and hopefully could lead to our final goal of 10% solar-to-hydrogen efficiency in a near future."

Explore further: Chemists achieve new technique with profound implications for drug development

More information: "Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting", 17 September 2013, Scientific Reports.

add to favorites email to friend print save as pdf

Related Stories

Improving performance of a solar fuel catalyst

Oct 04, 2012

(Phys.org)—Hydrogen gas that is created using solar energy to split water into hydrogen and oxygen has the potential to be a cost-effective fuel source if the efficiency of the catalysts used in the water-splitting ...

Increasing efficiency of hydrogen production from green algae

Apr 15, 2013

New research results from Uppsala University, Sweden, instill hope of efficient hydrogen production with green algae being possible in the future, despite the prevailing scepticism based on previous research. The study, which ...

Recommended for you

World's fastest manufacture of battery electrodes

7 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

7 hours ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

8 hours ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

User comments : 0