Wiring microbes to conduct and produce electricity faster

Sep 04, 2013
This shows wiring microbes to conduct and produce electricity faster. Credit: Amit Kumara

A team of researchers in Ireland have found evidence that altering the chemistry of an electrode surface (surface engineering) can help microbial communities to connect to the electrode to produce more electricity (electron-exchange) more rapidly compared to unmodified electrodes. Electron exchange is at the heart of all redox reactions occurring in the natural world, as well as in bioengineered systems: so called 'biolectrochemical systems'.

Practical applications of these systems include current generation, , and biochemical and biofuel production. The microbial-electrode interface is a sum of complex physical-chemical and permitting microbes to exchange electrons with solid electrodes to produce bioelectrochemical systems. In these systems the microbes, compete, and self-select for electron exchange capabilities. However, to date this selection is not well understood yet electricity or chemicals can be produced using various substrates, including wastewater or waste gases, depending upon operational settings, says Amit Kumar, who worked under the leadership of Dónal Leech at the National University of Ireland Galway in Ireland.

The Biomolecular Electronics Research Laboratory has been working on probing conditions for selection of electrodes by microbes for several years, and we have recently adopted an approach to tailor the chemistry of electrode surfaces which will help us better understand the selection mechanism says Amit Kumar and Dónal Leech. Our first result shows that surfaces modified with nitrogen-containing amines result in higher and more rapid production of current, compared to those without this modification, when placed in microbial cultures.

Next on our researcher agenda is to elucidate the selection mechanism using a range of surface modifications and microbial cultures.

Explore further: Plant-based molecule may be key to cleanup of Fukushima nuclear reactor disaster

More information: RC Advances , Arylamine functionalization of carbon anodes for improved microbial electrocatalysis, Amit Kumar, Peter Ó Conghaile, Krishna Katuri, Piet Lens and Dónal Leech,
2013, online at pubs.rsc.org/en/Content/Articl… g/2013/RA/c3ra42953a

add to favorites email to friend print save as pdf

Related Stories

Bacteria use hydrogen, carbon dioxide to produce electricity

May 20, 2013

Researchers have engineered a strain of electricity-producing bacteria that can grow using hydrogen gas as its sole electron donor and carbon dioxide as its sole source of carbon. Researchers at the University of Massachusetts, ...

Bacterial boost for clean energy

Mar 27, 2013

(Phys.org) —Bacteria are often associated with their disease-causing capacity or alternatively, with their role as normal residents of the human body, where they perform duties essential to health.

Recommended for you

Micropore labyrinths as crucibles of life

Jan 27, 2015

Water-filled micropores in hot rock may have acted as the nurseries in which life on Earth began. An LMU team has now shown that temperature gradients in pore systems promote the cyclical replication and ...

Cell imaging gets colorful

Jan 26, 2015

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his ...

New strategy to combat 'undruggable' cancer molecule

Jan 26, 2015

Three of the four most fatal cancers are caused by a protein known as Ras; either because it mutates or simply because it ends up in the wrong place at the wrong time. Ras has proven an elusive target for ...

Chemists find a way to unboil eggs

Jan 26, 2015

UC Irvine and Australian chemists have figured out how to unboil egg whites – an innovation that could dramatically reduce costs for cancer treatments, food production and other segments of the $160 billion ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.