University of Houston launches first nanotech company

Sep 03, 2013

Out of the test-tube, onto your jeans? How about your patio deck? A researcher from the University of Houston has turned his nanotechnology research into reality, launching a nanotech manufacturing company in the University's Energy Research Park.

C-Voltaics will manufacture the coatings, designed to protect fabric, wood, glass and a variety of other products from water, stains, dust and other .

"After you wash your jeans, the color starts to fade. It means you can keep your jeans looking better, longer," Seamus "Shay" Curran, director of UH's Institute for NanoEnergy, said. "Or you might have a very nice white blouse, but the minute you get ketchup or wine on it, you know you're going to have to throw it out. You're not going to have to throw things away because of fading or stains."

The coatings, technically known as self-cleaning hydrophobic nano-coatings, are designed to repel the elements. Curran said they will be competitively priced.

"If you want to have a successful business, it's got to be better and cheaper," he said. "Consumers aren't going to pay for it if it's not."

UH is a shareholder in C-Voltaics, which Chief Energy Officer Ramanan Krishnamoorti said is the first nanotechnology company to be spun off from the University.

Curran developed the coatings in conjunction with his work on portable, solar-powered generators. Solar panels work most efficiently if their surfaces are clean, and the coating acts as a protective barrier against dust, pollen, water and other pollutants.

His solar-powered generator, known as the Storm Cell, also is licensed to C-Voltaics, but Curran said the company will first focus on producing the coatings.

The coatings are slightly different chemically for each type of material to be treated, although Curran said the base chemistry is the same. They will be produced at the Energy Research Park, and Curran said he expects production to reach at least 400 gallons a day by the end of September.

This video is not supported by your browser at this time.

Based on customer demand, it could be far higher by next year, he said.

Initially, C-Voltaics will sell the coatings to other businesses, although Curran said a consumer product could be in stores as early as next spring.

"We should have a product you could apply to your own garden fence, your own garden wall," he said. No deal with a retailer has been signed.

C-Voltaics received the Young Technology Award at the Commercialization of Micro- and Nanosystems conference in The Netherlands last week, a competition for nanotechnology companies that are less than 10 years old. Judges based their decision on expected return on investment.

C-Voltaics also has been named a finalist for the 2013 Goradia Innovation Prize, which recognizes the best innovations from the Houston Gulf Coast region.

C-Voltaics is a high-profile example of the University's strategy of moving more of its faculty research into commercial ventures.

"The University's strategy for the commercialization of our faculty's discoveries is to identify the most innovative technologies, those that have the greatest potential to benefit society," said Rathindra Bose, vice president for research and technology transfer at UH.

Bose noted that one of the advantages of Curran's work is that the chemicals used are non-toxic. "His discoveries seem to have great potential to meet industry's need for an environmentally friendly material that improves the performance of solar cells," he said.

But the coating will also be used on a wide variety of other materials.

Nigel Alley, a research professor in the UH physics department and a member of Curran's research group, said the fabric coating will last as long as the fabric lasts.

Alley said the coating can be tailored to customers' specifications, depending on how long they require a product to resist water or other pollutants.

Curran said the coating won't become damaged by the elements, but routine wear and tear may damage the underlying wood on products such as patio decking, requiring the coating to be reapplied every few years.

The company offers the potential for the University to earn royalties it can invest in students and equipment, Curran said. But he said it also offers evidence that nanotechnology is ready for commercial applications.

"Nanomaterials are a way of using less material but having them be more efficient," he said. "You have something that adds a lot of functionality to the end product."

Explore further: Thin diamond films provide new material for micro-machines

add to favorites email to friend print save as pdf

Related Stories

University of Dayton expands to China

Sep 02, 2012

(AP)—A southwest Ohio university's new center in China will allow students and staff to collaborate with businesses on research and developing new products and technologies, university officials say.

Next generation of bio-based binders to be developed

Mar 19, 2013

The Waterloo Institute for Nanotechnology (WIN) at the University of Waterloo and a biomaterials company started by two Waterloo chemistry graduates are teaming together to make the next generation of biolatex binders for ...

A new anti-frost and anti-fog coating for glass

Feb 27, 2013

In an advance toward glass that remains clear under the harshest of conditions, scientists are reporting development of a new water-repellant coating that resists both fogging and frosting. Their research ...

Recommended for you

Light pulses control graphene's electrical behavior

23 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

User comments : 0