Research brings unbreakable phones one step closer

Sep 16, 2013

Breakthrough research at RMIT University is advancing transparent bendable electronics, bringing science fiction gadgets – such as unbreakable rubber-like phones, rollable tablets and even functional clothing – closer to real life.

Researchers from RMIT's Functional Materials and Microsystems research group have developed a new method to transfer electronics with versatile functionality, which are usually made on rigid silicon, onto a .

The result of their work was published last week in Nature Publishing Group's Asia Materials, the leading materials science journal for the Asia-Pacific.

The ability of micro and nano-electronic devices to sense, insulate or generate energy is controlled by thin, transparent nanolayers of , often much thinner than 1/100th of a human hair.

These oxide materials are brittle and their high processing temperatures – often in excess of 300 °C – have until now prevented their incorporation in flexible electronic devices.

Lead author, PhD researcher Philipp Gutruf, said the new process developed at RMIT could unleash the potential of fully functional flexible electronics, while providing a new way for the materials to mesh together.

"We have discovered a micro-tectonic effect, where microscale plates of oxide materials slide over each other, like geological plates, to relieve stress and retain ," he said.

"The novel method we have developed overcomes the challenges of incorporating oxide materials in bendable electronic devices, paving the way for bendable consumer electronics and other exciting applications."

Supervisor and co-leader of the research group, Dr Madhu Bhaskaran, said the new approach used two popular materials – transparent conductive and rubber-like silicone which is also biocompatible.

"The ability to combine any functional oxide with this biocompatible material creates the potential for to monitor or stimulate nerve cells and organs. This is in addition to the immediate potential for consumer electronics applications in flexible displays, solar cells, and energy harvesters."

Explore further: Imec demonstrates 50GHz Ge waveguide electro-absorption modulator

add to favorites email to friend print save as pdf

Related Stories

Growing thin films of germanium

Sep 06, 2013

Researchers have developed a new technique to produce thin films of germanium crystals—key components for next-generation electronic devices such as advanced large-scale integrated circuits and flexible ...

New low-cost, transparent electrodes

Jun 27, 2013

Indium tin oxide (ITO) has become a standard material in light-emitting diodes, flat panel plasma displays, electronic ink and other applications because of its high performance, moisture resistance, and capacity for being ...

ORNL finding goes beyond surface of oxide films

Aug 13, 2013

(Phys.org) —Better batteries, catalysts, electronic information storage and processing devices are among potential benefits of an unexpected discovery made by Oak Ridge National Laboratory scientists using ...

Recommended for you

Wearable device helps vision-impaired avoid collision

16 minutes ago

People who have lost some of their peripheral vision, such as those with retinitis pigmentosa, glaucoma, or brain injury that causes half visual field loss, often face mobility challenges and increased likelihood ...

Yahoo boosts share buyback plan by $2 billion

33 minutes ago

Yahoo on Thursday told US regulators that it will spend another $2 billion buying back shares as the pioneering US Internet search firm continues an effort to re-invent itself.

Blue Freedom uses power of flowing water to charge

4 hours ago

Good friends may decide to tell you something that is not true but nonetheless sustaining: Nothing is impossible. That was the case of Blue Freedom co-founder who asked his friend if it would be possible ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.