The ultimate molecular chess match

Sep 26, 2013 by Angela Herring

For the last two decades, it's been said that carbon nanotubes hold the promise to transform a range of fields, from alternative energy to drug delivery. But making that happen has proved difficult, according to Hicham Fenniri, an international leader in nanotechnology and new professor in Northeastern's College of Engineering.

"Carbon nanotubes are fascinating materials," said Fenniri, who also serves as a Director of the Biomedical Engineering Research Center in Doha, Qatar. "They have amazing chemical and physical properties, but they are challenging from a synthetic point of view." Controlling their size, purity, and , he explained, are just a few of the challenges standing in the way of realizing the material's high-value added applications.

In the early 90s, Fenniri decided to take matters into his own hands. "I was thinking, how can we develop a material from the ground up so we can control all these properties," he said. Since then, his work has led to the development of the world's first self-assembling organic nanotube, a signature accomplishment that established him as one of the field's leading innovators.

In contrast to carbon nanotubes, Fenniri's truly organic tubes consist not only of carbon but also other elements that make up all living things—oxygen, hydrogen, nitrogen, and many others. The tubes are biocompatible, making them a prime material to use as a coating for a medical implant or as a vehicle for . Fenniri is also using them as components in novel electronic and .

Historically, a conductive organic supramolecular nanowire has been an elusive target. But in recent years, Fenniri and his colleagues have been hard at work attempting to use their nanotubes as carriers for , just as conductive do;. Their preliminary reports have confirmed the feasibility of their innovative strategy. The potential achievement, he said, could transform the sector. He is also exploring potential medical applications for his materials, including whether they would make effective antibacterial agents.

"With organic chemistry, you can construct essentially any molecule by a combination of reactions and processes," Fenniri explained. "Really, you can liken it to a chess game: you can look at the target molecules and design a strategy to get there."

This is exactly the approach his team is taking in the development of new applications for their self-assembling nanotubes, which comprise smaller chemical components that have been adapted to fit their particular needs. Fenniri compared the synthetic approach to a set of Lego bricks—instead of different colors you have different chemistries. With this arsenal of building blocks and the natural tendency of molecules to obey certain organizational laws, he's winning a host of molecular chess games.

Explore further: Artificial muscles get graphene boost

Related Stories

Densest array of carbon nanotubes grown to date

Sep 20, 2013

Carbon nanotubes' outstanding mechanical, electrical and thermal properties make them an alluring material to electronics manufacturers. However, until recently scientists believed that growing the high density ...

Recommended for you

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

Printing 3-D graphene structures for tissue engineering

May 19, 2015

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.