New technique efficiently resolves chemistry of nanoparticles

Sep 10, 2013
A new technique combining scanning transmission electron microscopy and X-ray energy dispersive spectrometry showed this 3D nanoparticle used as a cathode material in lithium ion batteries. The technique enables clearer visualizations at much faster rates than currently used methods.

(Phys.org) —A new technique from Pacific Northwest National Laboratory and FEI Company lets scientists efficiently resolve elements' locations in three dimensions. The team's technique combines scanning transmission electron microscopy and X-ray energy dispersive spectrometry with a new detector arrangement and a brighter electron beam. The result is a three-dimensional map of the elements' placement on a sample smaller than a single blood cell. The team applied this technique to a lithium-rich nickel-based material that could be part of tomorrow's batteries. They discovered how nickel was segregating away from other elements on the material's surface.

"This technique gave us our fastest, cleanest view yet," said Dr. Chongmin Wang, a materials scientist with the national laboratory's Chemical Imaging Initiative. "The paper is proving popular; it is Ultramicroscopy's most downloaded article in the last 90 days."

Scientists, along with the rest of the population, want answers quickly and accurately so they can focus on what matters most. The team's technique provides precise 3D chemical images in hours, not days, and avoids the time and expense of reshaping samples and transporting them to other instruments. The information generated by this technique could help in the intentional, versus trial and error, material design of longer lasting, higher capacity batteries.

The team's method combines high-angle annular dark-field scanning with X-ray energy dispersive . The microscopy provides detailed information on complex architectures, while the spectrometry provides the elemental distribution.

For the spectrometry, the team arranged four windowless silicon drift detectors around the sample. The detectors, with improved tilt response, quickly scanned the sample. Because the electron beam did not stay on a single spot for more than 25 , the scientists avoided "parking" issues, where the lingers in a single spot and damages the sample. The scans from the four detectors were combined and joined with the microscopy information using specialized software.

This technique is faster and provides a wider field of view than more traditional 3D techniques such as scanning electron microscopy combined with electron energy-loss spectrometry or atom probe tomography. In 3 hours, the team obtained data sets from 29 microscopy images and elemental maps. Other techniques can take up to a day and do not provide as clear an image. Further, this single instrument provides a wider field than similar chemical techniques and allows scientists to see individual particles without additional preparation that could modify the native structure.

"It is now possible to obtain 3D composition maps from nanoparticles in their native state and reduce the total time to reconstruct chemical information," said Dr. Libor Kovarik, a PNNL scientist on the team.

The team continues to investigate how elements aggregate and drift in lithium-ion batteries and other energy storage materials. In addition, they are refining their techniques, striving to provide better ways to gather detailed information.

Explore further: New quantum dot technique combines best of optical and electron microscopy

More information: Genc, A. et al. 2013. XEDS STEAM Tomography for 3D Chemical Characterization of Nanoscale Particles, Ultramicroscopy 131, 24-32. DOI: 10.1016/j.ultramic.2013.03.023

Related Stories

New imaging tool directly measures liquid surfaces

May 31, 2013

(Phys.org) —A unique chemical imaging tool readily and reliably presents volatile liquids to scientific instruments, according to a team including Pacific Northwest National Laboratory. These instruments ...

Recommended for you

'Exotic' material is like a switch when super thin

4 hours ago

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...