Researchers tackle new challenge in pursuit of the next generation of lithium batteries

September 30, 2013 by Jared Sagoff
Lithium-air batteries are particularly appealing to researchers because they have a significantly higher theoretical capacity than conventional lithium-ion batteries.

The creation of the next generation of batteries depends on finding materials that provide greater storage capacity. One variety, known as lithium-air (Li-air) batteries, are particularly appealing to researchers because they have a significantly higher theoretical capacity than conventional lithium-ion batteries.

Li-air development is still in its infancy, however, and like most new technologies, it faces many challenges. One of these challenges involves the transfer of charge to the , which along with the cathode and electrolyte, is one of the three principal components of a battery.

In a new study, electrochemist Di-Jia (D.J.) Liu and his colleagues at the U.S. Department of Energy's Argonne National Laboratory studied anode behavior inside lithium-air batteries during the battery's cycling.

By using high-energy, focused X-ray beams provided by Argonne's Advanced Photon Source (APS), Liu and his team were able to non-destructively peer inside an operating battery to study the changes in the anode microstructure. They saw the formation of a thin solid coating of lithium hydroxide (LiOH), which continued to grow at the expense of lithium metal until the metal was totally converted to hydroxide and shut down the operation.

"This was the kind of question that everyone wanted to know but was afraid or didn't know how to ask," Liu said. "Nearly all the literature on Li-air batteries so far focused on the chemical processes at cathode while assuming the anode is completely reversible.  But now we know that this is not the case."

The team's investigation did not stop there. Since lithium hydroxide is not an ion or an electron-conducting material, it remained a mystery to understand how the coating does not stop the battery from cycling as soon as it forms.  Using a 3-dimensional micro-tomography technique at the APS, Liu and his collaborators were able to perform a "CAT scan" of the hydroxide coating and found numerous microscopic tunnels connecting to the metallic lithium at the anode to the rest of the battery.   

"These tunnels serve as ion-conducting channels that shuttle lithium ions between the anode and cathode," Liu said. "They sustained the Li-air battery operation but did not stop the anode decay."

Liu believes that one major cause of the lithium hydroxide problem could involve the breakdown of the battery's electrolyte – the medium that transports lithium ions between the two electrodes. Decomposition of the electrolyte has the potential to form water near the cathode, which could then migrate to the anode and react with the metallic lithium.

However, the Argonne experiment didn't reveal any lithium hydroxide near the cathode, which should have been present if water were formed by the breakdown of the electrolyte. "I think that we generated as many questions as answers through this study, which is the exciting part of science," he said.

This work was performed by an all Argonne team including beamline scientists John Okasinski, Peter Kenesei, Jonathan Almer and chemistry postdocs Jianglan Shui and Dan Zhao. It was supported by the U.S. Department of Energy's Office of Science and Argonne's Grand Challenge Program. The work was published in the August 9 issue of Nature Communications.

Explore further: Fluoride shuttle increases storage capacity

Related Stories

Fluoride shuttle increases storage capacity

October 21, 2011

German researchers have developed a new concept for rechargeable batteries. Based on a fluoride shuttle -- the transfer of fluoride anions between the electrodes -- it promises to enhance the storage capacity reached by lithium-ion ...

Eavesdropping on lithium ions

July 8, 2013

(Phys.org) —Lithium ion batteries are at the energetic heart of almost all things tech, from cell phones to tablets to electric vehicles. That's because they are a proven technology, light, long-lasting and powerful. But ...

Designer glue improves lithium-ion battery life

August 20, 2013

(Phys.org) —When it comes to improving the performance of lithium-ion batteries, no part should be overlooked – not even the glue that binds materials together in the cathode, researchers at SLAC and Stanford have found.

Solid-state battery could double the range of electric cars

September 19, 2013

(Phys.org) —A cutting-edge battery technology developed at the University of Colorado Boulder that could allow tomorrow's electric vehicles to travel twice as far on a charge is now closer to becoming a commercial reality.

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.