T-rays offer potential for earlier diagnosis of melanoma

Sep 11, 2013

The technology that peeks underneath clothing at airport security screening check points has great potential for looking underneath human skin to diagnose cancer at its earliest and most treatable stages, a scientist said here today.

The report on efforts to use terahertz —"T-rays"—in early diagnosis of was part of the 246th National Meeting & Exposition of the American Chemical Society. Almost 7,000 reports on new advances in science and other topics are on the schedule for the meeting. It continues here through Thursday in the Indiana Convention Center and downtown hotels.

Anis Rahman, Ph.D., who spoke on the topic, explained that malignant melanoma, the most serious form of skin cancer, starts in pigment-producing cells located in the deepest part of the epidermis. That's the outer layer of the skin. Biochemical changes that are hallmarks of cancer occur in the melanocytes long before mole-like melanomas appear on the skin.

"Terahertz radiation is ideal for looking beneath the skin and detecting early signs of melanoma," Rahman said. "T-rays are different from X-rays, which are 'ionizing' radiation that can cause damage. T-rays are a form of 'non-ionizing' radiation, like ordinary visible light, but they can be focused harmlessly below into the body and capture biochemical signatures of events like the start of cancer."

T-rays occupy a niche in the spectrum of electromagnetic radiation, which includes X-rays and visible light, between microwaves like those used in kitchen ovens and the infrared rays used in TV remote controls. One of the advantages of T-rays is that they penetrate only a few millimeters through cloth, skin and other non-metallic material. Ten sheets of printer paper would be about 1 millimeter thick. This key characteristic has led to their use in quality control in the pharmaceutical industry to check the surface integrity of pills and capsules, in homeland security to remotely frisk underneath clothes, and as a non-destructive way of probing beneath the top layers of famous paintings and other culturally significant artwork.

Rahman, president and chief technology officer of Applied Research & Photonics in Harrisburg, Pa., said that medical imaging is one of their newest and most promising potential uses. He described research focusing T-rays through donated samples of that suggest the technology could be valuable in diagnosing melanoma.

In addition to developing T-rays for cancer diagnostics, Rahman's team has successfully harnessed them to measure the real-time absorption rates and penetration in the outer layer of skin of topically applied drugs and shampoo—measurements that until now had not been possible.

Other wide-ranging applications include the detection of early stages of tooth decay, trace pesticides on produce, flaws in pharmaceutical tablet coatings, and concealed weapons under clothing, as well as testing the effectiveness of cosmetics. Rahman's talk was part of a symposium entitled "Terahertz Spectroscopy: Problem Solving for the 21st Century," being held at the ACS meeting. Abstracts of those talks appear below.

Explore further: New chip makes testing for antibiotic-resistant bacteria faster, easier

Related Stories

Recommended for you

Devices designed to identify pathogens in food

9 hours ago

Researchers at the National Polytechnic Institute (IPN) in Mexico have developed a technology capable of identifying pathogens in food and beverages. This technique could work in the restaurant industry as ...

Biosensor may improve clinical diagnosis of influenza A

10 hours ago

Sensors based on special sound waves known as surface acoustic waves (SAWs) are capable of detecting tiny amounts of antigens of Influenza A viruses. Developed by A*STAR researchers, the biosensors have the ...

New chip makes testing for antibiotic-resistant bacteria faster, easier

May 26, 2015

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

Use your smartphone for biosensing

May 26, 2015

An Australian research team has shown that smartphones can be reconfigured as cost-effective, portable bioanalytical devices, with details reported in the latest edition of the Open Access Journal 'Sensors'.

Faster, portable microbial analysis in the field

May 25, 2015

Until recently, it took hours – sometimes days – to analyze biological samples after they were frozen in the field and brought back to the laboratory. But now there is a faster, cheaper and smaller way ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.