SUNRISE offers new insight on sun's atmosphere

September 27, 2013 by Karen C. Fox
The right image shows an image captured by the Sunrise balloon-borne telescope of a region of the chromosphere in close proximity to two sunspots. It serves as a close up of the left images, which were captured by NASA's Solar Dynamics Observatory. The images were taken on July 16, 2013. Credit: NASA/SDO/MPS

Three months after the flight of the solar observatory Sunrise – carried aloft by a NASA scientific balloon in early June 2013—scientists from the Max Planck Institute for Solar System Research in Germany have presented unique insights into a layer on the sun called the chromosphere. Sunrise provided the highest-resolution images to date in ultraviolet light of this thin corrugated layer, which lies between the sun's visible surface and the sun's outer atmosphere, the corona.

With its one-meter mirror, Sunrise is the largest to fly above the atmosphere. The telescope weighed in at almost 7,000 pounds and flew some 20 miles up in the air. Sunrise was launched from Kiruna in the north of Sweden and, after five days drifting over the Atlantic, it landed on the remote Boothia Peninsula in northern Canada, about the chromosphere throughout its journey.

The temperature in the chromosphere rises from 6,000 K/10,340 F/5,272 C at the surface of the sun to about 20,000 K/ 35,540 F/19,730 C. It's an area that's constantly in motion, with different temperatures of hot material mixed over a range of heights, stretching from the sun's surface to many thousands of miles up. The temperatures continue to rise further into the corona and no one knows exactly what powers any of that heating.

"In order to solve this riddle it is necessary to take as close a look as possible at the chromosphere – in all accessible wavelengths," said Sami Solanki, the principal investigator for Sunrise from the Max Planck Institute. Sunrise used an instrument that was able to filter particular of light that are only emitted from the chromosphere.

Two images of the chromosphere as captured by the Sunrise solar observatory that flew on a NASA balloon in July 2013. On the left a typical pattern can be seen: dark areas surrounded by bright rims. On the right, the images show bright, stretched structures on the edges of the darker sunspots. Credit: MPS

Sunrise's extremely high-resolution images in this wavelength painted a complex picture of the chromosphere. Where the sun is quiet and inactive, dark regions with a diameter of around 600 miles can be discerned surrounded by bright rims. This pattern is created by the enormous flows of solar material rising up from within the sun, cooling off and sinking down again. Especially eye-catching are bright points that flash up occasionally—much richer in contrast in these ultraviolet images than have been seen before. Scientists believe these bright points to be signs of what's called magnetic flux tubes, which are the building blocks of the sun's magnetic field. The magnetic field is of particular interest to scientists since it is ultimately responsible for all of the dynamic activity we see on our closest star.

"These first analyses are extremely promising," said Solanki. "They show that the ultraviolet radiation from the chromosphere is highly suitable for visualizing detailed structures and processes."

The researchers now hope that the next months will provide more new insights – and are looking forward to a close collaboration with colleagues from NASA's Interface Region Imaging Spectrograph, or IRIS mission. IRIS launched on June 27, only weeks after the end of the Sunrise mission, and also studies the ultraviolet radiation from chromosphere and corona. Michael Knoelker at the High Altitude Observatory in Boulder, Colo. Is the NASA principal investigator for Sunrise.

Explore further: Why NASA observes the Sun in different wavelengths

Related Stories

Why NASA observes the Sun in different wavelengths

January 23, 2013

(Phys.org)—Taking a photo of the sun with a standard camera will provide a familiar image: a yellowish, featureless disk, perhaps colored a bit more red when near the horizon since the light must travel through more of ...

NASA's IRIS mission readies for a new challenge

May 22, 2013

(Phys.org) —The time draws near. NASA is getting ready to launch a new mission, a mission to observe a largely unexplored region of the solar atmosphere that powers its dynamic million-degree outer atmosphere and drives ...

Sunrise 2: A journey to the active Sun

June 4, 2013

(Phys.org) —Four years after its first mission, the Sunrise team is preparing the balloon-borne solar observatory for a second flight. The launch is expected in the next days.

A unique glance into the Sun's atmosphere

September 25, 2013

Three months after the flight of the balloon-borne solar observatory Sunrise, scientists from the Max Planck Institute for Solar System Research (MPS) in Germany now present unique insights into the central layer of the Sun's ...

Recommended for you

Will SETI's unprecedented new program finally find E.T.?

August 4, 2015

Stephen Hawking, Frank Drake and dozens of journalists gathered at the Royal Society in London last week to hear astronomers announce a ground-breaking new project to search for intelligent extraterrestrial life called "Breakthrough ...

Tracking a mysterious group of asteroid outcasts

August 4, 2015

High above the plane of our solar system, near the asteroid-rich abyss between Mars and Jupiter, scientists have found a unique family of space rocks. These interplanetary oddballs are the Euphrosyne (pronounced you-FROH-seh-nee) ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

barakn
5 / 5 (1) Sep 27, 2013
The captions on the two images appear to have been switched.
cantdrive85
1 / 5 (7) Sep 28, 2013
The temperature in the chromosphere rises from 6,000 K/10,340 F/5,272 C at the surface of the sun to about 20,000 K/ 35,540 F/19,730 C. It's an area that's constantly in motion, with different temperatures of hot material mixed over a range of heights, stretching from the sun's surface to many thousands of miles up. The temperatures continue to rise further into the corona and no one knows exactly what powers any of that heating.

It should be noted that nobody who adheres to the standard model know what powers that heating. The EU POV of the Crooke's tube analogy of electric discharge in plasma explains the temperature gradient quite well.
http://electric-c...utGD.pdf

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.