Scientists discover important mechanism in plant cells which regulates direction that plant cells grow

September 23, 2013

Scientists have discovered an important mechanism in plant cells which regulates the direction that plant cells grow.

The discovery could have the potential to develop higher yielding or increase the size of plants grown for use in biofuels.

A BBSRC-funded team at The University of Manchester demonstrated how the building of scaffolds is regulated to produce distinct shapes, allowing the plant cell to grow in particular directions.

Plant cells can expand to up to 1,000 times their original size, and the growth and shape of plant cells is determined by the direction of expansion.

Many plant cells, such as those in the root or stem, need to expand in a particular direction for the plant to develop properly.

Key to this process is the distribution of , a strong compound which forms much of the plant cell wall.

A protein with the cell, called the microtubule network, dictates the organisation of cellulose in the wall by forming tracks which guide its placement.

Previous work found that microtubules are organised into aligned configurations, with poorly aligned microtubules being cut away by an enzyme called katanin.

The researchers demonstrated that a protein called SPIRAL2 regulates where and when microtubule cutting occurs. Depending on the organisation of microtubule required by the plant SPR2 either remains stationary preventing katanin cutting the microtubules or is constantly moving along microtubules exposing areas for katanin to sever microtubules and drive the formation of aligned microtubules.

It is the first described that determine microtubule organisation by regulating where and when katanin cuts .

Professor Simon Turner, who led the research in the Faculty of Life Sciences, said: "This study answers some important fundamental questions about cell growth and microtubule patterning, and potentially gives us the ability to predictably alter microtubule patterns.

"In the future this may allow us to manipulate plant development and engineer more efficient canopies or stronger shorter stems. It may also provide a means of increasing plant biomass either for better crop yields or to generate material for bioenergy production."

The paper, 'SPIRAL2 Determines Plant Microtubule Organization by Modulating Microtubule Severing,' is published in Current Biology.

Explore further: The plant cell's corset

Related Stories

The plant cell's corset

September 2, 2009

We still have a lot to discover about the mechanism in plants that ensures cell growth in a specific direction. However it is clear that a structure of parallel protein tubes plays an important role. Simon Tindemans investigated ...

Scientists watch cell-shape process for first time

October 10, 2010

Researchers at the Carnegie Institution for Science, with colleagues at the Nara Institute of Science and Technology, observed for the first time a fundamental process of cellular organization in living plant cells: the birth ...

Cell biology: new insights into the life of microtubules

July 2, 2012

Every second, around 25 million cell divisions take place in our bodies. This process is driven by microtubule filaments which continually grow and shrink. A new study shows how so-called motor proteins in the cytosol can ...

Recommended for you

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...

Ancestral background can be determined by fingerprints

September 28, 2015

A proof-of-concept study finds that it is possible to identify an individual's ancestral background based on his or her fingerprint characteristics – a discovery with significant applications for law enforcement and anthropological ...

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.