Improving salmon's success in the wild and aquaculture

Sep 24, 2013
Picture of smolt in the laboratory.

Have you ever been stressed and forgot what you were doing? Chronic mild stress may explain why many salmon don´t return to our rivers and why 20% of salmon production is lost every year.

Chronic mild , such as a bad working environment, or sleepless nights with small children, are well known to cause learning and .

Researchers at Uni Research AS have shown that the same is true for salmon. This type of stress is very difficult to detect by traditional means. Often not until it is too late! Whether salmon are transferred from rearing tanks to sea-cages in aquaculture or are migrating from freshwater to the sea, their ability to learn and adapt rapidly to the new environments will dictate their future success.

The research team in the Integrative Fish Biology group at Uni Research AS has been establishing new ways to evaluate the salmon´s mental robustness, the ability to react and learn quickly in a new environment, before its too late. They recently showed that salmon exposed to poor water quality were poorer learners and that markers in the brain can show the have experienced chronic (Grassie et al 2013).

Identifying environmental situations that cause chronic mild stress will improve fish welfare and reduce losses in fish aquaculture. In addition, these researchers have shown that the same tools can be applied to improve the restoration of our . A recent article by Ebbesson and co-workers in The Proceedings of the Royal Society, shows that raising fish in an environment with "furniture" improves their (Salvanes et al 2013).

These data demonstrate that alternative rearing strategies for restoration fish need to be found. These types of studies will provide new welfare indicators for the evaluation of welfare and aid in determining stress thresholds that can provide an optimal welfare and improved production. Together these physiological and mental robustness indicators will provide important information in the evaluation of the fishes robustness towards future challenges.

Fish welfare

Previously, a homeostatic-based definition of welfare postulated a negative linear relationship between stress and welfare, stability and no threats to homeostasis means the best welfare. In recent years, a new concept of welfare based on allostasis suggests an inverted U-shaped relationship, where both too little or too much stress gives poor welfare (Korte et al., 2007).

The allostasis concept is an important model to discriminate between normal adaptive stress responses and situations leading to poor animal welfare. Good animal welfare is characterized by a broad predictive physiological, cognitive, and behavioural capacity to anticipate and respond to environmental challenges in a way that matches the environmental demands (McEwen and Wingfield 2003, 2010).

Reducing these capacities leads to a mismatch between the response required by the actual conditions and the actual responses activated by animal, limiting the ability to experience good welfare. Understanding how the mediators of allostasis and coping ability are affected by stress level will give us a better understanding about the regulation of fish welfare.

Recent studies in fish have demonstrated that previous environmental experiences, whether negative (Grassie et al 2013) or positive (Salvanes et al 2013) provide -based mechanisms to efficiently deal with environmental challenges, integrating physiological and cognitive abilities (Ebbesson et al 2013).

Explore further: Change thinking to keep animal welfare on agenda

More information: Salvanes, A. et al. 2013. Environmental enrichment promotes neural plasticity and cognitive ability in fish, Proc R Soc B 280: 20131331. DOI: 10.1098/rspb.2013.1331

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Plants with dormant seeds give rise to more species

11 hours ago

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Scientists tether lionfish to Cayman reefs

21 hours ago

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...