Get ready for Rosetta's wake-up call with activity schedule for target comet

Sep 14, 2013
Image of 67P/Churyumov-Gerasimenko acquired in February 2009, processed using a numerical filter. Structures visible in the image are signatures of regions of enhanced activity on the nucleus surface. Credit: J-B Vincent/MPS/GP Tozzi/L Lara/Z-Y Lin

After a journey of almost ten years, the Rosetta mission has just a few months left to wait before beginning its rendezvous with a time capsule. Comet 67P/Churymov-Gerasimenko is a dirty snowball of ice and dust that preserves material from the formation of the Solar System 4.5 billion years ago. During 2014, the European Space Agency's most ambitious mission to date will both start to orbit the comet's nucleus and deploy a small laboratory of scientific instruments, Philae, to dock with the comet's surface. To aid Rosetta in safely achieving its task, an international group of scientists back on Earth are using ground-based telescopes and computer models to understand the behaviour of the comet as it approaches the Sun and begins to form its tail. Their findings have been presented this week at the European Planetary Science Congress (EPSC) 2013 at University College London.

"For two or three orbits now, our community has been observing the to determine the shape of the nucleus, the angle at which it spins on its axis and how its activity varies as it orbits the Sun. All of this information is vital for the planning of Rosetta's orbit and Philae's delivery," said Jessica Agarwal of the Max Planck Institute for Solar System Research (MPS).

"At this meeting, we have discussed everything from the make-up of the of the nucleus to the dust production rates, size and velocity of the particles emitted, the way the comet interacts with the solar magnetic environment… There are a lot of things we need to know!" added Matt Taylor, ESA's Project Scientist for the Rosetta Mission.

Jean-Baptiste Vincent (MPS) has used images and modelling to study the development of gas jets as the comet becomes active. "We need to understand the formation and evolution of dust coma structures at all scales: from tiny filaments only visible close to the surface of the nucleus, to large structures extending tens of thousands of kilometres in the coma. Comet 67P appears to behave in a very consistent way, at least over the last two orbits. The southern hemisphere is more active than the northern and there are three major active regions from where gas jets evolve, which can eject dust particles at around 50 kilometres per hour."

Image acquired between June 2008 and Feburary 2009. The location of the dust coma structures are enhanced by different filtering techniques ((1-3) adaptive Laplace-filtered images, (4) adaptive Laplace-filtered image with the structure geometry indicated by annotations and (5) dashed lines, (6) Larson-Sekanina filtered image). Credit: J-B Vincent/MPS/GP Tozzi/L Lara/Z-Y Lin http://www.europlanet-eu.org/images/stories/epsc2013/rosetta_67p-evolution.jpg Dust coma of 67P at a distance of 187 million kilometres from the Sun, shortly before the comet’s closest approach. Image acquired on 18 Feb. 2009. The image (top left) is presented as processed through various numerical filters to enhance the visibility of the jets. Credit: J-B Vincent/MPS/GP Tozzi/L Lara/Z-Y Lin

To safeguard the spacecraft during its long, cold journey through deep space, Rosetta was placed into hibernation in 2011. Research by a group led by Colin Snodgrass and Cecilia Tubiana of MPS suggests that 67P will start emitting gas and dust by March 2014, earlier than expected and just two months after the spacecraft receives its wakeup call on Monday 20 January 2014.

The scientists have based their predictions on 31 sets of images showing the comet at different points during its orbit. The images were recorded between 1995 and 2010 with telescopes including the Very Large Telescope (VLT) at the European Southern Observatory (ESO). By subtracting successive images to remove the starry background and making the comet stand out, they were able to study changes in brightness and hence the activity levels of the comet was at different points in its .

"For the first time, we have a meaningful comparison of all data sets so that we can reconstruct the activity of the comet as it moves around the Sun," said Snodgrass. "The results were something of a surprise."

Scientists had estimated that the comet would start to form is tail at distance of around 450 million kilometres from the Sun, when it would become warm enough for water ice to sublimate. Instead, it became active much further out—at 650 million kilometres.

"Water will still be frozen solid at that distance from the Sun. Some other gas must be responsible for this earlier activity that we've observed," said Tubiana.

Explore further: Comet Siding Spring whizzes past Mars (Update)

Provided by European Planetary Science Congress

4.9 /5 (7 votes)

Related Stories

Rosetta-comet will wake up early

Aug 20, 2013

(Phys.org) —On its way towards the Sun comet Churyumov-Gerasimenko, next year's destination of ESA's spacecraft Rosetta, will start emitting gas and dust earlier than previously expected. The comet's activity ...

Asteroid Steins in 3-D

Sep 02, 2013

(Phys.org) —Five years ago this week, ESA's Rosetta mission flew by asteroid Steins en route to comet Churyumov–Gerasimenko, where it will finally arrive next year after a decade in space.

Near-Earth asteroid is really a comet

Sep 10, 2013

Some things are not always what they seem—even in space. For 30 years, scientists believed a large near-Earth object was an asteroid. Now, an international team including Joshua Emery, assistant professor ...

Phaethon confirmed as rock comet by STEREO vision

Sep 10, 2013

The Sun-grazing asteroid, Phaethon, has betrayed its true nature by showing a comet-like tail of dust particles blown backwards by radiation pressure from the Sun. Unlike a comet, however, Phaethon's tail ...

Mission to land on a comet

Feb 03, 2012

Europe’s Rosetta spacecraft is en route to intercept a comet– and to make history. In 2014, Rosetta will enter orbit around comet 67P/Churyumov-Gerasimenkoand land a probe on it, two firsts.

Recommended for you

Heavy metal frost? A new look at a Venusian mystery

13 hours ago

Venus is hiding something beneath its brilliant shroud of clouds: a first order mystery about the planet that researchers may be a little closer to solving because of a new re-analysis of twenty-year-old ...

Hot explosions on the cool sun

19 hours ago

(Phys.org) —The Sun is more spirited than previously thought. Apart from the solar eruptions, huge bursts of particles and radiation from the outer atmosphere of our star, also the cooler layer right below ...

Europe secures new generation of weather satellites

19 hours ago

Contracts were signed today to build three pairs of MetOp Second Generation satellites, ensuring the continuity of essential information for global weather forecasting and climate monitoring for decades to ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (3) Sep 14, 2013
In case you were wondering: The subscript to the image does not relate to the images shown, but to the images that can be viewed when going to the link provided in the subscript.
Anda
not rated yet Sep 14, 2013
Good point antialias. I was really wondering about the text. Here's the link:
http://www.europl...tion.jpg
GSwift7
not rated yet Sep 17, 2013
Once it starts returning data, this mission will revolutionize our knowledge about comets.

I hope the lander is able to attach itself to the comet as planned. One of the most important instruments of the mission will depend on this being successful. The lander will broadcast radar pings through the comet and the orbiter is supposed to pick them up from the opposite side. This will give us our first look at the interior structure of a comet.

If it turns out to be composed of concentric layers, it would beg for a follow-up mission with a core sampler and a sample return. That would be one of the coolest "tree rings" of all time.