A protein that can mean life or death for cells

September 17, 2013
A protein that can mean life or death for cells
In the image, the ER of a cell is shown with Mfn2 protein (left) and without it. In the right, the ER form vesicles which indicate that the organelle is completely disorganized and unable to respond correctly to the cellular stress Credit: JP Muñoz, IRB Barcelona

Each cell in an organism has a sensor that measures the health of its "internal" environment. This "alarm" is found in the endoplasmic reticulum (ER), which is able to sense cellular stress and trigger either rescue responses or the death of the cell. A team from the Institute for Research in Biomedicine (IRB), in Barcelona, has discovered that the protein Mitofusin 2 (Mfn2) plays a crucial role in correctly measuring stress levels, and also makes sure the pathways of cell repair or cell death are effective.

The researchers reveal some of the that connect Mfn2 to endoplasmic reticulum stress in the latest edition of the scientific journal, EMBO Journal, from the Nature Group, published by the European Molecular Biology Organization.

When the scientists removed Mfn2 from the cell under conditions of cell stress, the endoplasmic reticulum responded by over-activating the repair pathways. By doing so, it contradictorily functioned worse, reducing the capacity of cells to overcome the stress insult and promoting to a lesser degree apoptotic . "When Mfn2 is removed, the pathways are completely disrupted," says Antonio Zorzano, coordinator of IRB's Molecular Medicine Programme and leader of the group "Heterogenic and polygenic diseases".

Not only diabetes

Mfn2 is a mitochondrial protein whose deficiency is related to diabetes. In an earlier publication in Proceedings of the National Academy of Sciences (PNAS), Dr. Zorzano's research team demonstrated that without Mfn2, tissues become resistant to insulin, a characteristic of diabetes and the so-called . In this study, they also observed that the cells had higher endoplasmic reticulum stress.

The current study investigates the relationship between mitochondria and the endoplasmic reticulum, and indicates that changes in mitochondria, caused by the loss of the Mfn2 protein, directly affect the endoplasmic reticulum function. "We have shown that Mfn2 is important for cell viability and has implications for numerous diseases, such as neurodegeration, cancer, cardiovascular disease, in addition to diabetes," says postdoctoral researcher Juan Pablo Muñoz, first author of the study.

Is Mitofusin 2 a good therapeutic target?

"The fact that we can modulate cell damage response with Mfn2 opens a wide window of possible therapeutic avenues for further study," says Muñoz. The Chilean scientist at IRB explains that tumour cells don't activate cell death properly and proliferate uncontrolled. "Cancer cells have already been noted to have low Mfn2 levels, and if we could increase such levels, we would be able to promote apoptosis," he continues. According to this, other research teams have already published work indicating that the overexpression of Mfn2 induce apoptosis.

To demonstrate the utility of Mfn2 as a target, the researchers now need to find a small molecule, or drug, that modulates its expression in animals. "Our work published on Mfn2 is a proof of concept that highlights the importance of this mitochondrial protein for cell health," says Zorzano. One of the challenges of the group is to secure funding to perform a massive screening of molecules with the ability to modulate Mfn2 expression and confirm its effects in mice.

Explore further: Cell death pathway linked to mitochondrial fusion

More information: Mfn2 modulates the UPR and mitochondrial function via repression of PERK, Juan Pablo Muñoz, Saška Ivanova, Jana Sánchez-Wandelmer, Paula Martínez-Cristóbal, Eduard Noguera, Ana Sancho, Angels Díaz-Ramos, María Isabel Hernández-Alvarez, David Sebastián, Caroline Mauvezin, Manuel Palacín and Antonio Zorzano, The EMBO Journal (2013) 32, 2348 - 2361. DOI: 10.1038/emboj.2013.168

Related Stories

Cell death pathway linked to mitochondrial fusion

January 24, 2011

New research led by UC Davis scientists provides insight into why some body organs are more susceptible to cell death than others and could eventually lead to advances in treating or preventing heart attack or stroke.

Protein regulates protein folding in cells during stress

December 21, 2012

(Phys.org)—Cornell researchers have discovered that a protein known for moving cells around in the body also helps regulate a cellular organelle responsible for generating one-third of all proteins in the human body.

Missing link in Parkinson's disease found

April 25, 2013

Researchers at Washington University School of Medicine in St. Louis have described a missing link in understanding how damage to the body's cellular power plants leads to Parkinson's disease and, perhaps surprisingly, to ...

Cancer: Unraveling a mechanism behind cellular proliferation

August 14, 2013

A hallmark of cancer is uncontrolled and sustained cell division. One particular overactive protein is implicated in this malfunction. EPFL scientists have discovered a complex mechanism that regulates this protein's activity ...

Recommended for you

Herbicides can't stop invasive plants. Can bugs?

August 31, 2016

Over the past 35 years, state and federal agencies have spent millions of dollars and dumped untold quantities of herbicides into waterways trying to control the invasive water chestnut plant, but the intruder just keeps ...

Smarter brains are blood-thirsty brains

August 30, 2016

A University of Adelaide-led project has overturned the theory that the evolution of human intelligence was simply related to the size of the brain—but rather linked more closely to the supply of blood to the brain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.