Precomputing speeds up cloth imaging

September 5, 2013 by Bill Steele
Precomputing speeds up cloth imaging
Computer-generated image of a purple tablecloth.

( —Creating a computer graphic model of a uniform material like woven cloth or finished wood can be done by modeling a small volume, like one yarn crossing, and repeating it over and over, perhaps with minor modifications for color or brightness. But the final "rendering" step, where the computer creates an image of the model, can require far too much calculating for practical use. Cornell graphics researchers have extended the idea of repetition to make the calculation much simpler and faster.

Rendering an image of a patterned silk tablecloth the old way took 404 hours of calculation, according to Kavita Bala, associate professor of science. The new method, developed by Cornell graduate student Shuang Zhao in collaboration with researchers at the University of California, Berkeley, and Autodesk, cut the time to about one-seventh of that, and with thicker fabrics, computing was speeded up 10 or 12 times.

The researchers shared their work with the computer graphics community at the 2013 SIGGRAPH conference, July 21-25, in Anaheim, Calif.

Cloth simulations can allow fabric designers to see what the finished product will look like before feeding the design into a loom, Bala said. "You do appearance modeling, then only build it after you're happy with what you see," she explained. Bala and Steve Marschner, associate professor of computer science, have been working in collaboration with designers at the Rhode Island School of Design. Filmmakers also want good images of cloth, she added.

A computer begins with a 3-D model of the object's surface. To render an image, the computer must calculate the path of as they are reflected from the surface. Cloth is particularly complicated because light penetrates into the surface and scatters a bit before emerging and traveling to the eye. It's the pattern of this scattering that creates different highlights on silk, wool or felt.

Precomputing speeds up cloth imaging
The image is made up of thousands of tiny blocks modeling individual yarn crossings, so the "camera" can zoom in for fine detail.

The Cornell researchers previously used high-resolution computed tomography (CT) scans of real fabric to guide them in building micron-resolution models, piling together hundreds of blocks per square centimeter to create the complete image. Brute-force rendering computes the path of light through every block individually, adjusting at each step for the fact that blocks of different color and brightness will have different scattering patterns.

The new method precomputes the patterns of a set of example blocks – anywhere from two dozen to more than 100 – representing the various possibilities. These become a database the computer can consult as it processes each block of the full image. For each type of block, the precomputation shows how light will travel inside the block and pass through the sides to adjacent blocks.

Precomputing speeds up cloth imaging
Seeing how light is reflected from each block takes extensive computing.

In tests, the researchers first rendered images of plain-colored fabrics, showing that the results compared favorably in appearance with the old brute-force method. Then they produced images of patterned tablecloths and pillows. Patterned fabrics require larger databases of example blocks, but the researchers noted that once the database is computed, it can be re-used for numerous different patterns. The method could be employed on other materials besides cloth, the researchers noted, as long as the surface can be represented by a small number of example blocks. They demonstrated with images of finished wood and a coral-like structure.

Explore further: Computer-simulated knitting goes right down to the yarn (w/ Video)

Related Stories

Software arranges photo lighting after the shoot

August 22, 2013

What often separates professional photographers from amateurs is their mastery of lighting. Lighting can control what parts of an image draw your attention, or whether an object looks expensive or cheesy. And even for pros, ...

Crowdsourcing creates a database of surfaces

August 28, 2013

( —Computer graphics are moving off the movie screen and into everyday life. Home remodeling specialists, for example, may soon be able to to show you how your kitchen would look with marble countertops or stainless ...

Recommended for you

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Not another new phone! But Nextbit's Robin is smarter

September 2, 2015

San Francisco-based Nextbit wants you to meet Robin, which they consider as the smarter smartphone. Their premise is that no one is making a smart smartphone; when you get so big it's hard to see the forest through the trees. ...

Team creates functional ultrathin solar cells

August 27, 2015

(—A team of researchers with Johannes Kepler University Linz in Austria has developed an ultrathin solar cell for use in lightweight and flexible applications. In their paper published in the journal Nature Materials, ...

Magnetic fields provide a new way to communicate wirelessly

September 1, 2015

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (3) Sep 05, 2013
i think they just photographed a real cloth
1 / 5 (4) Sep 05, 2013
BRDF is basically the same in all points.
No need to zoom in - waste of time.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.