Pigeon wingman rules

Sep 30, 2013 by Pete Wilton, Oxsciblog
Pigeon wingman rules
Pigeons from the study in flight. Credit: Zsuzsa Akos, Eotvos University, Budapest.

Travelling in flocks may make individual birds feel secure but it raises the question of who decides which route the group should take.

Mathematical models developed by scientists suggest that a simple set of rules can help flocks, swarms, and herds reach a collective decision about where to go. But investigating how this really works, especially with animal groups in flight, is extremely challenging.

A new study led by Oxford University scientists, reported in the Journal of the Royal Society Interface, has used the sort of high-resolution GPS technology normally reserved for extreme sports to look at how homing pigeons make decisions on the wing.

I asked lead author Benjamin Pettit of Oxford University's Department of Zoology about the research and what it tells us about the rules of the fly game…

OxSciBlog: What are the advantages of flying in a flock?
Benjamin Pettit: For pigeons, the main advantage of flying in a flock is to lower the risk of being eaten. Therefore pigeons in flocks need to coordinate their behaviour to stay together - something they have in common with many other animals. In addition to safety, there might be navigational advantages to flying as a flock. For example, when a flock of pigeons flies home together, the route they take will potentially combine navigational knowledge of many birds.

OSB: How are pigeons able to 'share information' in flight?
BP: Until now, nobody has directly measured how pigeons respond to each other's movements in flight, but from mathematical simulations we know that flocking can arise from simple rules based on visual cues, namely 'stay with the group,' 'avoid collisions,' and 'head in the same direction as those around you.'

If each bird is also paying attention to navigational cues, like familiar landmarks, then flocking rules will be effective at sharing information within the flock. What we do know from previous data on pigeon flocks is that there isn't always an equal, two-way exchange of information, and instead some pigeons have more of a leadership role within the flock.

OSB: How did you explore group navigation behaviour?
BP: We studied the simplest flocking scenario of two pigeons flying home together. Each pigeon had its own preferred homing route, which meant we could test how each pigeon's preference factored into the pair's route, and also find out how the group decision arises from the pigeons' momentary interactions during the flight.

The pigeons carried lightweight, high-resolution GPS loggers, which were actually designed for extreme sports. It was also the right technology for racing pigeons. Working together with mathematical biologists at Uppsala University in Sweden, we created a simulation based on the interaction rules that we inferred from the GPS data, which was a useful tool for studying pigeons' group decisions.

OSB: What did you find out about the rules governing this behaviour?
BP: Pigeons responded to each other by adjusting their speeds and making small turns, maintaining a close, side-by-side configuration most of the time. A pigeon was sensitive not only to its neighbour's position, as has been observed in fish schools, but also to the direction its neighbour was headed.

The flocking behaviour was stronger toward a neighbour in front than behind, which means that a faster pigeon that consistently gets in front has more influence over the pair's route. This simple leadership mechanism based on speed is something we investigated with a combination of the data and the simulation.

Our findings show how real bird flocks compare to the 'rules of motion' postulated in simulations over the past three decades.

OSB: How might your findings help us understand group navigation in other animals?
BP: First of all, we found that persistent leadership-follower relationships observed in nature are not necessarily something complicated that requires animals to recognise each other and assess each other's ability. The mechanism can be as simple as a difference in speed.

Second, we found some similarities with fish in terms of how flocks/schools are formed, but also some differences that are likely due to the biomechanics of flight versus swimming.

The pairwise configuration of pigeons is similar to that observed in starling flocks. Rather than converging on a 'universal' flocking rule, different animal lineages have their own solutions for collective motion, which affect the shapes of schools, herds, and flocks. The particular interaction rules will also affect how information passes through these groups from one animal to another.

A report of the research, entitled 'Interaction rules underlying group decisions in homing ', is published in the Journal of the Royal Society Interface.

Explore further: Pigeons fly home with a map in their heads

More information: rsif.royalsocietypublishing.org/content/10/89/20130529.abstract

add to favorites email to friend print save as pdf

Related Stories

Passenger pigeons help to navigate

Nov 15, 2012

Many animals travel long distances in groups but little is known about how this may influence the navigational skills of individuals.

Pigeons fly home with a map in their heads

Jul 25, 2013

It is a fascinating phenomenon that homing pigeons always find their way home. A doctoral student in biology at the University of Zurich has now carried out experiments proving that pigeons have a spatial ...

Pigeon 'backpacks' track flock voting (w/ Video)

Apr 08, 2010

(PhysOrg.com) -- Pigeon flocks are guided by a flexible system of leadership in which almost every member gets a ‘vote’ but the votes of high-ranking birds carry more weight, a new study has shown.

How birds of different feathers flock together

Mar 07, 2013

(Phys.org) —New research from the Universities of Exeter and Cambridge reveals for the first time that, contrary to current models used to explain the movement of flocks, the differences between bird species ...

Secrets of flocking revealed

Oct 26, 2011

Watching thousands of birds fly in a highly coordinated, yet leaderless, flock can be utterly baffling to humans. Now, new research is peeling back the layers of mystery to show how exactly they do it -- and ...

Recommended for you

Field study shows how sailfish use their bill to catch fish

20 hours ago

(Phys.org) —A large team of European researchers has finally revealed the purpose of the long, thin, needle-like bill sported by the famous sailfish. It's used, they report in their paper published in Proceedings of ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Imaging turns a corner

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.