Physicists find enhanced fluctuations in nanomagnets

Sep 06, 2013

NYU physicists have discovered that nanomagnets—a billionth of a meter in size—with a preferred up or down magnetization are sensitive to heating or cooling, more than expected.

Their findings, which appear in the journal Physical Review B Rapid Communication, suggest that a widely used model to describe the reversal of nanomagnets needs to be modified to account for temperature-dependent changes in the properties of the materials.

It is known that nanomagnets never switch at the same field each time – rather, random fluctuations in thermal energy generate a distribution of switching fields. But what's less clear is the origin of this phenomenon.

Developing a firmer understanding of the "activation energy" of nanomagnets is important in designing for magnetic memory-, such as in hard-disk drives and magnetic random access memories, in which can lead to data loss.

In their study, conducted in the laboratory of NYU physicist Andrew Kent, the researchers used a common approach to detect the activation energy barrier by measuring the distribution of switching fields across a wide temperature range.

The researchers discovered that changes in temperature were accompanied by changes in the height of the activation energy barrier. This resulted in a breakdown of the standard model, which assumes that the activation energy is temperature independent. This assumption works in earlier studies conducted over a limited range of temperatures. A modified model that considers the of the material characteristics fits the data well.

Explore further: Quantum-dot spectrometer is small enough to function within a smartphone

More information: prb.aps.org/abstract/PRB/v88/i10/e100401

Related Stories

Physicists light 'magnetic fire' to reveal energy's path

May 13, 2013

New York University physicists have uncovered how energy is released and dispersed in magnetic materials in a process akin to the spread of forest fires, a finding that has the potential to deepen our understanding of self-sustained ...

Magnetic charge crystals imaged in artificial spin ice

Aug 28, 2013

A team of scientists has reported direct visualization of magnetic charge crystallization in an artificial spin ice material, a first in the study of a relatively new class of frustrated artificial magnetic ...

Recommended for you

Better memory with faster lasers

19 hours ago

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.