Study could help improve nuclear waste repositories

Sep 19, 2013
Sandia researcher Yifeng Wang examines a clay sample from South Dakota as part of iodide experiments. A team of Sandia researchers is working to understand how fast iodine-129 released from spent nuclear fuel would move through a deep clay-based geological repository. Credit: Randy Montoya

(Phys.org) —Here's the question faced by a team of Sandia National Laboratories researchers: How fast will iodine-129 released from spent nuclear fuel move through a deep, clay-based geological repository?

Understanding that process is crucial as countries worldwide consider underground formations for , because clay offers low permeability and high radionuclide retention. Even when a repository isn't sited in clay, engineered barriers often include a compacted buffer of bentonite, a common type of clay, to improve waste isolation.

Iodine-129, a with a half-life of 15.7 million years, is an important fission product in spent nuclear fuel and a major contributor to the predicted total from a deep geological repository. So even a small improvement in the ability of clay to retain iodine-129 can make a difference in total dose predictions.

Some evidence indicates between clay and —a negatively charged predominant of iodine in geologic repositories, said researcher Yifeng Wang, who leads the study. Computer models haven't been able to adequately explain clay's with iodide, and the mechanism is difficult to study because the faint interaction is easily masked by measurement uncertainties.

"It seems there's some kind of previously unrecognized mechanism that accounts for that kind of interaction," said Wang, co-principal investigator for the Laboratory Directed Research and Development project to study radionuclide-clay interaction, now in its third and final year.

His team concluded the interaction, often disregarded as experimental noise, is real and that there might be engineering ways to improve clay's ability to retain iodide.

Sandia team focuses on clay structure

The team —Wang and former co-principal investigator Andy Miller, who recently left Sandia; technician Hernesto Tellez; and year-round interns Jessica Kruichak and Melissa Mills—developed experiments with different clays, focusing on their structural characteristics. Past studies of iodide retention in clay concentrated on bentonite. Wang's team instead studied several different clays, five with the same type of layered structure as bentonite.

Although industries are accustomed to using the plentiful and oft-studied bentonite, the team's experiments show other clays have higher radionuclide retention capability and might isolate spent fuel waste better. Kaolinite had the best iodide retention of the five clays with layering properties. Wang said the team believes its work "can help us select a better clay material or combination of clay materials."

Team members believe they discovered a mechanism for iodide-clay interactions that allows more accurate prediction of iodine-129 movement in a geologic repository. The finding was presented in May to the International High Level Radioactive Waste Management Conference in Albuquerque and was published in the conference proceeding.

The experimental data indicate iodide directly interacts with the tiny spaces between the layers of clay, called clay interlayer sites. That raises the question of how negatively charged iodide gets into those negatively charged interlayer sites, since like charges repel each other, similar to magnets of the same polarity. "So that contradicts the conventional concept," Wang said.

The team got clues about what was going on by studying the problem at the nanoscale, 100,000 times smaller than the diameter of a human hair. At that scale, Wang said, the property of water changes in a way that enhances the pairing of ions.

Conclusion: ion pairing explains iodide reaction with clay

Ion pairing explains how iodide reacts with clay and moves into the pores despite the fact both iodide and clays are negatively charged.

The team postulates that iodide pairs with positively charged sodium to create a neutral ion pair. That occurs because of the enhanced ion association capability of water trapped in nanometer-scale clay interlayers, resulting in a pairing that helps iodide move into the interlayer by minimizing electric repulsion, Wang said.

Clay is densely compacted when it's used as a barrier and can swell as it contacts with water. "That's why people use clay materials and compact it," Wang said. "It's a good engineered barrier to isolate radionuclides."

Retention properties increase with compaction, which makes the pores smaller, he said. "That's another way to increase the effectiveness of clay materials," he said.

But Sandia's study also suggests measurements in labs could be more accurate. Usually researchers break up samples before they measure the solvency of a specific material. "We actually show the nano-pore confinement makes a big difference," Wang said. "That means what you measure in the lab most of the time is not representative of an actual compacted material. The compacted material may in fact give you better retention."

Explore further: Sea-level surge at Antarctica linked to icesheet loss

Provided by Sandia National Laboratories

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Turning glass into clay

Jul 06, 2012

The magic mineral and microbial processes that transform volcanic glass into clay have been identified, adding important knowledge to how clay is formed.

Clays can expand under pressure

Mar 27, 2013

It was always believed that water is "squeezed" out of the clay structure under pressure but physicists at Umea University in Sweden together with German colleagues show that this appear to be not always ...

Martian clay minerals might have a much hotter origin

Sep 12, 2012

(Phys.org)—Ancient Mars, like Earth today, was a diverse planet shaped by many different geologic processes. So when scientists, using rovers or orbiting spacecraft, detect a particular mineral there, they ...

Clean drinking water for everyone

May 01, 2012

Nearly 80 percent of disease in developing countries is linked to bad water and sanitation. Now a scientist at Michigan Technological University has developed a simple, cheap way to make water safe to drink, even if it’s ...

Recommended for you

Aging Africa

Aug 29, 2014

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

NASA animation shows Hurricane Marie winding down

Aug 29, 2014

NOAA's GOES-West satellite keeps a continuous eye on the Eastern Pacific and has been covering Hurricane Marie since birth. NASA's GOES Project uses NOAA data and creates animations and did so to show the end of Hurricane ...

EU project sails off to study Arctic sea ice

Aug 29, 2014

A one-of-a-kind scientific expedition is currently heading to the Arctic, aboard the South Korean icebreaker Araon. This joint initiative of the US and Korea will measure atmospheric, sea ice and ocean properties with technology ...

User comments : 0