Non-precious metal catalysts outperforming Pt-based one

Sep 23, 2013
Synthesis of M-OMPC. Credit: UNIST

Researchers from Ulsan National Institute of Science and Technology (UNIST), Korea Institute of Energy Research (KIER), and Brookhaven National Laboratory, have discovered a new family of non-precious metal catalysts. These catalysts exhibit better performance than platinum in oxygen-reduction reaction (ORR) only with 10 % of the production cost of a platinum catalyst.

The finding, described in Nature's Scientific Reports (published online on Step. 23, 2013), provides an important step towards circumventing the biggest obstacle to widespread- commercialization of .

Fuel cells have various advantages compared to internal combustion engines or batteries, due to their high and environmentally benign and quiet operation conditions. However, the high cost and instability of platinum catalysts for oxygen reduction reaction at the cathode have critically impeded the extensive application of polymer electrolyte fuel cells.

The UNIST research team reported on a new family of non-precious based on ordered mesoporous *porphyrinic carbons (M-OMPC) with high surface areas and tunable .

"Our synthetic strategy for the non-precious metal catalysts included a multitude of advantages that would be favorable to PEFC applications" said Prof. Joo. "First, our synthetic method is amenable to simple and mild experimental conditions. Second, the synthesis of the M-OMPC catalysts could be readily scaled up to a few tens of grams in a single batch. Third, well-developed, hierarchical micro-mesoporosity would be advantageous for efficient transport of fuels and by-products. Finally, the M-OMPC catalysts showed very high surface areas, which could significantly increase the density of the catalytically active sites accessible to reactants."

The research was led by Sang Hoon Joo, professor of the School of Nano-Bioscience and Chemical Engineering at South Korea's UNIST. Fellow authors include: Jae Yeong Cheon from UNIST; Gu-Gon Park from the Korea Institute of Energy Research (KIER); Radoslav R. Adzic from the Chemistry Department of the Brookheaven National Laboratory.

The materials developed by the UNIST research team were prepared by nanocasting ordered mesoporous silica (OMS) templates with metalloporphyrin precursors. In addition they were constructed with three dimensional networks of porphyrinic carbon frameworks.

The best M-OMPC catalyst showed an extremely high electrocatalytic activity for ORR in an acidic media. Its ORR activity is one of the best among the non-precious metal catalysts ever, and even higher than the state-of-the-art Pt catalyst. In addition, the FeCo-OMPC showed superior long-term durability and methanol-tolerance in ORR, compared to the Pt catalyst.

The research team attributed the high ORR activity of the FeCo-OMPC to its relatively weak interaction with oxygen as well as the high surface area design of the catalyst.

"Currently the world is striving to look for another energy source for increased energy demand and environmental issue," said Prof. Joo. "The novel material developed by the UNIST research team would be a solution to commercialize the eco-friendly and cost-effective fuel cells."

Explore further: Smartgels are thicker than water

More information: *porphyrin: Any of a class of heterocyclic compounds containing four pyrrole rings arranged in a square

add to favorites email to friend print save as pdf

Related Stories

Direct nitrogen fixation for low cost energy conversion

Jul 23, 2013

A simple, low-cost and eco-friendly method of creating nitrogen-doped graphene nanoplatelets (NGnPs), which could be used in dye-sensitized solar cells and fuel cells, is published in Scientific Reports today. ...

Metal-free catalyst outperforms platinum in fuel cell

Jun 05, 2013

Researchers from South Korea, Case Western Reserve University and University of North Texas have discovered an inexpensive and easily produced catalyst that performs better than platinum in oxygen-reduction ...

Recommended for you

New star-shaped molecule breakthrough

20 hours ago

(Phys.org) —Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created.

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (2) Sep 23, 2013
These catalysts exhibit better performance than platinum in oxygen-reduction reaction (ORR) only with 10 % of the production cost of a platinum catalyst.
...
showed superior long-term durability and methanol-tolerance in ORR, compared to the Pt catalyst.

Woha. That would be huge. If this stuff can be made in bulk...
ubavontuba
1 / 5 (6) Sep 23, 2013
Interesting! I'd like to know more about temperature ranges and durability though.