Newly discovered microbes could be crucial to understanding origins of life on Earth

Sep 09, 2013

Scientists from the J. Craig Venter Institute (JCVI), along with collaborators from the University of Southern California (USC) and Delft University of Technology, have published results from a three year study outlining the microbial diversity in The Cedars, a high pH, ultra reducing, low salinity systems of springs located in Northern California. The research has been published in the online early edition of the journal PNAS.

This unique spring system is an active terrestrial serpentinization site. Serpentinization is a process whereby water reacts with certain types of minerals in the ground to produce other kinds of minerals, as well as hydrogen, methane and highly alkaline fluids. These sites are common in the deep ocean where tectonic plates meet, but are very rare elsewhere.

For three years the JCVI, USC and TU Delft team took multiple samples in three springs at The Cedars and isolated the microbes using as opposed to culturing them. Each spring was fed by unique groundwater, one by deep groundwater only and the other two by a mixture of deep and . The team found that the remained constant in each spring but that each one had unique microbes which were determined by the type of groundwater by which they were fed.

The microbes in the deep groundwater fed spring were distinct from any other microbial communities found in other terrestrial serpentinizing sites. The most abundant of these microbes are members of the Chloroflexi, Clostridia, andcandidate division OD1, followed by some Euryarchaeota. The microbes found in the mixture of shallow and deep groundwater fed sites appear to be similar to other microbial communities isolated from other terrestrial sites. The most abundant of these microbes were Betaproteobacteria.

The team concludes that because of the pristine yet harsh nature of The Cedars environment, the microbes found there could be crucial to understanding the on Earth and in understanding the key survival mechanism used by these hearty microbes.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

add to favorites email to friend print save as pdf

Related Stories

Methane-eating microbes found in Illinois aquifer

Jul 25, 2013

Methane-consuming microbes live deep underground in pristine aquifers, according to a study by the U.S. Department of Energy's Argonne National Laboratory and the Environmental Protection Agency. This type of organism, which ...

Wiring microbes to conduct and produce electricity faster

Sep 04, 2013

A team of researchers in Ireland have found evidence that altering the chemistry of an electrode surface (surface engineering) can help microbial communities to connect to the electrode to produce more electricity ...

Microbial changes regulate function of entire ecosystems

May 31, 2013

A major question in ecology has centered on the role of microbes in regulating ecosystem function. Now, in research published ahead of print in the journal Applied and Environmental Microbiology, Brajesh Singh of the Univer ...

Dead guts spill history of extinct microbes

Dec 12, 2012

Extinct microbes in fecal samples from archaeological sites across the world resemble those found in present-day rural African communities more than they resemble the microbes found in the gut of cosmopolitan ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
1 / 5 (1) Sep 09, 2013
It is not about "origins" (because the water pH is much higher than the cell pH) but early biotopes. Subduction zones are a rich redox environment and should have been an important early phosphor source. http://www.pnas.o...21d6d551

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.