Neutrons help understand the origin of thermoelectric properties in sodium cobaltates

Sep 09, 2013
Neutrons help us understand the origin of thermoelectric properties in sodium cobaltates
The measured thermal conductivity of Na0.8CoO2 (black) well compare with the calculated lattice contribution to the thermal conductivity for the Na0.8CoO2 superstructure comprising a square array of tri-vacancy clusters. Lattice contribution was obtained from the phonon lifetimes from neutrons (red) in a large temperature range and X-rays (yellow) at 200K. The calculated values for NaCoO2 (blue) are a factor of six higher.

Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state refrigerators, could play an important role in a global sustainable energy solution. Such a development involves identifying materials with a higher thermoelectric efficiency than currently available. This is a major challenge given the conflicting combination of material properties that are required.

An international group led by Prof. Jon Goff from Royal Holloway, University of London, has used a combination of experimental studies of phonon dispersions together with DFT calculations to obtain new insight into the factors that control thermal conductivity in the multi vacancy cobaltate material Na0.8CoO2.

Thanks to a combination of Inelastic Neutron Scattering (INS) and Inelastic X-ray Scattering (IXS) experiments, it was possible to directly observe an Einstein-like rattling mode at low energy, involving large anharmonic displacements of the inside multi-vacancy clusters. This rattling mode lowers thermal conductivity ? by a factor of six compared with vacancy-free NaCoO2. In particular, INS measurements performed on a relatively large crystal using the triple-axis spectrometer IN8 at the Institut Laue-Langevin allowed the group to determine the lattice contribution to the as a function of temperature in the square tri-vacancy phase (see Figure). Instead of observing the characteristics expected of a phonon glass electron crystal, the group discovered that it is the change to the phonon dispersion from the rattling modes that contribute primarily to the suppression of ?.

By quantitatively accounting for the suppression of ? for this class of materials, the results of this work will guide the design of the next generation of materials for applications in solid-state refrigerators and power recovery.

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

Large wave-vector phonon modes in silicon nanomembranes

Jul 16, 2013

(Phys.org) —Modified large wave-vector phonons in semiconductor membranes via hard X-ray thermal diffuse scattering (TDS) were observed that provide new insight into the fundamental thermal and electronic ...

Recommended for you

Throwing light on a mysterious human 'superpower'

22 minutes ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.