Nanofabrication: Medical sensors improve with holey gold nanostructures

Sep 25, 2013
Localized surface plasmon resonance (bright areas) around a gold nanohole enhances the fluorescence of a biomarker dye (Y-shaped molecule) when a specific molecule of interest (purple circle) is present. Credit: 2013 A*STAR Institute of High Performance Computing

Recent advances in nanotechnology are providing new possibilities for medical imaging and sensing. Gold nanostructures, for example, can enhance the fluorescence of marker dyes that are commonly used to detect biomolecules and diagnose specific diseases.

Now, Ping Bai at the A*STAR Institute of High Performance Computing, Singapore, and co-workers have developed a fast and inexpensive way to fabricate arrays of gold nanoholes. The researchers have shown that sensor chips built using these nanostructures can accurately detect cancer-related molecules in blood and are small enough to be used in portable medical devices.

Nanohole arrays are designed so that of certain wavelengths will induce large-scale oscillations of the gold electrons, known as localized (SPR). The localized SPR focuses the absorbed to enhance fluorescence (see image).

"Commercial SPR systems are already used in hospital laboratories, but they are bulky and expensive," says Bai. "We would like to develop small, handheld devices for on-the-spot clinical use. This requires localized SPR, for which we need nanohole arrays."

Previously, nanohole arrays have been created using electron-beam lithography (EBL), which is expensive and time consuming. Bai and co-workers used EBL to create a nickel mold and then used the mold to print nanohole patterns onto a photoresist material. The researchers made the by evaporating gold onto the patterned structure before peeling off the photoresist material. Because the nickel mold can be reused many times, this method—called nano-imprinting—can produce large numbers of gold nanohole arrays.

"We fabricated arrays of 140 nanometer-square nanoholes with very few defects," says Bai. As a first demonstration, the researchers showed that a made with their nanohole arrays could detect prostate cancer antigens in blood, and was ten times more sensitive than an identical device that used a gold film without nanoholes. Optimizing the chip design would further improve the sensitivity, Bai notes.

The team believes that these chips could be incorporated into cheap and portable point-of-care devices for rapid diagnosis of diseases such as dengue fever. "The microfluidic cartridge built using our nanohole arrays is about the size of a credit card," says Bai. "In the future, we hope to build detectors that use very simple light sources, such as LEDs, and simple detectors similar to smartphone cameras. These devices will have widespread applications across medical science and could even be used to detect contaminants in food, water or the air."

Explore further: Tiny antennas let long light waves see in infrared

More information: Wong, T. et al. High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers, Lab on a Chip 13, 2405–2413 (2013).

add to favorites email to friend print save as pdf

Related Stories

Tiny antennas let long light waves see in infrared

Sep 24, 2013

( —University of Illinois at Urbana-Champaign researchers have developed arrays of tiny nano-antennas that can enable sensing of molecules that resonate in the infrared (IR) spectrum.

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0