New microplasma source excites matter in controlled way, may revolutionize how archaeologists date objects in the field

September 6, 2013
A new microplasma source, shown on the finger of Uppsala University doctoral student Martin Berglund, may help archaeologists date objects in the field. Credit: A.Persson/Uppsala

A team of researchers from Uppsala University in Sweden has designed a microplasma source capable of exciting matter in a controlled, efficient way. This miniature device may find use in a wide range of applications in harsh environments, but can also help revolutionize archaeology.

As the researchers describe in the Journal of Applied Physics, produced by AIP Publishing, their new device offers many advantages, such as , an integrated fluidic system, and Langmuir probes for plasma diagnostics.

At the university's Ångström Space Technology Centre (ÅSTC), the researchers work with many kinds of micro and nanotechnologies for use in space and other : scientific instruments, imaging, communication hardware, vehicles and spacecraft, propulsion devices, and . Size limitation is always a huge challenge.

"Putting miniaturized hardware into orbit or thousands of meters underground is always technically easier and less expensive, but using fundamentally different technology for demanding applications is often met with skepticism," explains Greger Thornell, director of ÅSTC. "So we need to also compete in terms of performance and reliability."

The researchers are accustomed to working with microrocketry and localized phenomena in tiny devices such as sensors and actuators. These types of phenomena sometimes involve very , intense plasma, and high pressures.

"In this case, the localization, or rather concentration, means that the device itself becomes handy and power-efficient, and also that it consumes small sample amounts, which widens the range of applications far beyond the requirement of simply lightweight or portable instruments," said Thornell.

Archaeology is one of the main applications being investigated right now to help determine the distribution of in organic samples. "This information is critical for archaeologists, but measuring these isotope distributions can be extremely painstaking and time consuming," said Anders Persson, senior researcher.

Their plasma source may be used to develop an instrument for field archaeologists, which would allow them to perform measurements while out in the field; this in turn may revolutionize archaeology by diversifying the amount of information available during the decision-making process of an excavation. "Archaeology is just one of the many exciting applications we see for our plasma source," he added.

This is still an early study to evaluate the use of this type of plasma source in an optogalvanic spectroscopy setup. "The next step will be to start reiterating and optimizing the signal-to-noise ratios," said Martin Berglund, doctoral student.

Explore further: Plasma nanoscience needed for green energy revolution

More information: The article, "Microplasma source for optogalvanic spectroscopy of nanogram samples," authored by Martin Berglund, Greger Thornell, and Anders Persson, is published in the Journal of Applied Physics.

Related Stories

Plasma nanoscience needed for green energy revolution

April 14, 2011

A step change in research relating to plasma nanoscience is needed for the world to overcome the challenge of sufficient energy creation and storage, says a leading scientist from CSIRO Materials Science and Engineering and ...

Tiny submersible could search for life in Europa's ocean

June 11, 2013

One of the first visitors to Jupiter's icy moon of Europa could be a tiny submarine barely larger than two soda cans. The small craft might help strike the right balance between cost and capability for a robotic mission to ...

Key factors for wireless power transfer

July 31, 2013

What happens to a resonant wireless power transfer system in the presence of complex electromagnetic environments, such as metal plates? A team of researchers explored the influences at play in this type of situation, and ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (5) Sep 06, 2013
will they be able to accurately determine the age of the Great Pyramid at Giza?
1 / 5 (4) Sep 06, 2013
I ran into an archaeologist 'dating' an object in a field once.
I said,"Dang, that's disgusting! When are you nerds going to learn about women!"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.