Microencapsulation produces uniform drug release vehicle

Sep 03, 2013
Microencapsulation produces uniform drug release vehicle
Perfect microspheres were produced using 4 percent by weight of the polymer. Credit: Mohammad Reza Abidian

Consistently uniform, easily manufactured microcapsules containing a brain cancer drug may simplify treatment and provide more tightly controlled therapy, according to Penn State researchers.

"Brain tumors are one of the world's deadliest diseases," said Mohammad Reza Abidian, assistant professor of bioengineering, chemical engineering and . "Typically doctors resect the tumors, do and then chemotherapy."

The majority of chemotherapy is done intravenously, but, because the drugs are very toxic and are not targeted, they have a lot of side effects. Another problem with is that they go everywhere in the bloodstream and do not easily cross the so little gets to the target tumors. To counteract this, high doses are necessary.

"We are trying to develop a new method of delivery," said Abidian. "Not intravenous delivery, but localized directly into the tumor site."

Current treatment already includes leaving wafers infused with the anti-tumor agent BCNU in the brain after surgery, but when the drugs in these wafers run out, repeating invasive placement is not generally recommended.

"BCNU has a half life in the body of 15 minutes," said Abidian. "The drug needs protection because of the short half life. Encapsulation inside can solve that problem."

Microencapsulation produces uniform drug release vehicle
Microfibers were produced using 10 percent by weight solutions of the polymer. Credit: Mohammad Reza Abidian

Encapsulation of BCNU in microspheres has been tried before, but the resulting product did not have uniform size and drug distribution or high drug-encapsulation efficiency. With uniform spheres, manufacturers can design the microcapsules to precisely control the time of drug release by altering polymer composition. The are also injectable through the skull, obviating the need for more surgery.

Abidian, working with Pouria Fattahi, graduate student in bioengineering and chemical engineering, and Ali Borhan, professor of chemical engineering, looked at using an electrojetting technique to encapsulate BCNU in poly(lactic-co-glycolic) acid, an FDA-approved biodegradable polymer. In electrojetting, a solution containing the polymer, drug and a solvent are rapidly ejected through a tiny nozzle with the system under a voltage as high as 20 kilovolts but with only microamperage. The solvent in the liquid quickly evaporates leaving behind anything from a perfect sphere to a fiber.

"Electrojetting is a low cost, versatile approach," said Abidian. "We can produce drug-loaded micro/nano-spheres and fibers with same size, high drug-loading capacity and high drug-encapsulation efficiency."

The researchers tested solutions of polymer from 1 percent by weight to 10 percent by weight and found that at 1 to 2 percent they obtained flattened microspheres, at 3 to 4 percent they had microspheres, at 4 to 6 percent they had and microfibers, at 7 to 8 percent they had beaded microfibers and above 8 percent they obtained only fibers. They report their results in the current issue of Advanced Materials.

"Depending on the desired applications, all the shapes are useful except for the beaded fibers," said Abidian. "While fibers are not good for drug delivery, they are good for tissue engineering applications."

This is a scanning electron micrograph of BCNU-loaded microspheres (black and white background) with 3D rendered images of brain cancers cells (yellow) and released BCNU (purple). Credit: Mohammad Reza Abidian

The researchers also investigated the sphericality of the spheres.

"We looked at how spherical they were and found they were perfect," said Abidian. They have a height versus width ratio of 1.05 and they have size uniformity. A perfect sphere would have a ratio of 1.

The researchers also looked into how BCNU releases from the microcapsules. Using mathematics, the researchers established a drug diffusion coefficient for the encapsulation system. This helps in designing how much drug to include in each microcapsule and how long the microcapsules will deliver the required dosage.

The researchers note that BCNU is not the only drug that can be encapsulated in polymer beads for drug delivery. Other drugs can be used but would have their own diffusion coefficients and half lifes.

Explore further: New insights on carbonic acid in water

Related Stories

Slow-release 'jelly' delivers peptide drugs better

Jan 28, 2013

Duke University biomedical engineers have developed a new delivery system that overcomes the shortcomings of a promising class of peptide drugs – very small proteins – for treating diseases such as diabetes and cancer.

Tiny capsules deliver drugs

Jan 12, 2009

A tiny particle syringe composed of polymer layers and nanoparticles may provide drug delivery that targets diseased cells without harming the rest of the body, according to a team of chemical engineers. This ...

Iron key to brain tumor drug delivery

Jun 02, 2011

Brain cancer therapy may be more effective if the expression of an iron-storing protein is decreased to enhance the action of therapeutic drugs on brain cancer cells, according to Penn State College of Medicine researchers.

Brain-penetrating particle attacks deadly tumors

Jul 02, 2013

(Phys.org) —Scientists have developed a new approach for treating a deadly brain cancer that strikes 15,000 in the United States annually and for which there is no effective long-term therapy. The researchers, ...

Recommended for you

World's fastest manufacture of battery electrodes

10 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

10 hours ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

11 hours ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

User comments : 0