A microbe's trick for staying young

September 12, 2013

Researchers have discovered a microbe that stays forever young by rejuvenating every time it reproduces. The findings, published in Current Biology, provide fundamental insights into the mechanisms of aging.

While aging remains an inevitable fact of life, an international team involving researchers from the University of Bristol and the Max-Planck Institute for Molecular Cell Biology and Genetics in Germany has found that this is not the case for a common species of yeast microbe which has evolved to stay young.

The team has shown that, unlike other species, the yeast microbe called S. pombe, is immune to aging when it is reproducing and under favourable growth conditions.

In general, even symmetrically diving , do not split into two exactly identical halves. Detailed investigations revealed that there are in place that ensure that one half gets older, often defective, cell material, whereas the other half is equipped with new fully-functional material. So like humans microbes, in a sense, produce offspring that is younger than the parent.

But aging is not inevitable for the common yeast, S. pombe. The newly-published work shows that this microbe is immune to aging under certain conditions. When the yeast is treated well, it reproduces by splitting into two halves that both inherit their fair share of old cell material. "However," explains Iva Tolic, the lead investigator on the project "as both cells get only half of the damaged material, they are both younger than before". At least in a sense, the yeast is rejuvenated a bit, every time it reproduces.

Unlike other species S. pombe can escape aging as long as it keeps dividing fast enough, but what happens when it is treated badly? To test this, the researchers exposed the yeast to heat, , and damaging chemicals, which slowed its growth to a point where the microbes could not divide fast enough to stay young. Once subjected to these negative influences the started splitting into a younger and an older half just like other cells. While the older cells eventually died, their survived long enough to reproduce even in the harsh environments.

So, although S. pombe can just like other organisms when it has to, it can escape aging when times are good. "The cells manage this switch by cleverly exploiting the laws of physics" added Dr Thilo Gross, from the University of Bristol's Department of Engineering Mathematics, who supervised some of the modelling and data-analysis work on the project, "that microbes age is in itself surprising and it is amazing to see that even such simple organisms have evolved very powerful strategies to survive."

The findings highlight S. pombe, as an interesting organism that could potentially serve as a model of certain non-aging types of cells in humans.

Explore further: DNA 'off switch' may reverse premature aging

More information: The study, entitled 'Fission yeast does not age under favorable conditions, but does so after stress' by Miguel Coelho et al is published in Current Biology on 12 September 2013.

Related Stories

DNA 'off switch' may reverse premature aging

June 15, 2011

The secret to preventing or reversing premature aging may be found in a DNA “off switch” that humans share with common yeast, according to new research from the University of Toronto.

Yeast models of cell death and survival mechanisms

October 19, 2012

European scientists investigated differences in the genomes of various distantly-related yeast and their effects on cell survival. Results may provide insight into cell death induced by free radicals.

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.