A microbe's trick for staying young

Sep 12, 2013

Researchers have discovered a microbe that stays forever young by rejuvenating every time it reproduces. The findings, published in Current Biology, provide fundamental insights into the mechanisms of aging.

While aging remains an inevitable fact of life, an international team involving researchers from the University of Bristol and the Max-Planck Institute for Molecular Cell Biology and Genetics in Germany has found that this is not the case for a common species of yeast microbe which has evolved to stay young.

The team has shown that, unlike other species, the yeast microbe called S. pombe, is immune to aging when it is reproducing and under favourable growth conditions.

In general, even symmetrically diving , do not split into two exactly identical halves. Detailed investigations revealed that there are in place that ensure that one half gets older, often defective, cell material, whereas the other half is equipped with new fully-functional material. So like humans microbes, in a sense, produce offspring that is younger than the parent.

But aging is not inevitable for the common yeast, S. pombe. The newly-published work shows that this microbe is immune to aging under certain conditions. When the yeast is treated well, it reproduces by splitting into two halves that both inherit their fair share of old cell material. "However," explains Iva Tolic, the lead investigator on the project "as both cells get only half of the damaged material, they are both younger than before". At least in a sense, the yeast is rejuvenated a bit, every time it reproduces.

Unlike other species S. pombe can escape aging as long as it keeps dividing fast enough, but what happens when it is treated badly? To test this, the researchers exposed the yeast to heat, , and damaging chemicals, which slowed its growth to a point where the microbes could not divide fast enough to stay young. Once subjected to these negative influences the started splitting into a younger and an older half just like other cells. While the older cells eventually died, their survived long enough to reproduce even in the harsh environments.

So, although S. pombe can just like other organisms when it has to, it can escape aging when times are good. "The cells manage this switch by cleverly exploiting the laws of physics" added Dr Thilo Gross, from the University of Bristol's Department of Engineering Mathematics, who supervised some of the modelling and data-analysis work on the project, "that microbes age is in itself surprising and it is amazing to see that even such simple organisms have evolved very powerful strategies to survive."

The findings highlight S. pombe, as an interesting organism that could potentially serve as a model of certain non-aging types of cells in humans.

Explore further: Slowing the ageing process—it's in your genes

More information: The study, entitled 'Fission yeast does not age under favorable conditions, but does so after stress' by Miguel Coelho et al is published in Current Biology on 12 September 2013.

add to favorites email to friend print save as pdf

Related Stories

Slowing the ageing process—it's in your genes

Sep 05, 2013

Imagine being able to take a drug that can reduce the rate at which you age. Research by Massey University senior lecturer in genetics Dr Austen Ganley is making this dream one step closer to reality.

Yeast models of cell death and survival mechanisms

Oct 19, 2012

European scientists investigated differences in the genomes of various distantly-related yeast and their effects on cell survival. Results may provide insight into cell death induced by free radicals.

DNA 'off switch' may reverse premature aging

Jun 15, 2011

The secret to preventing or reversing premature aging may be found in a DNA “off switch” that humans share with common yeast, according to new research from the University of Toronto.

Researcher studies protein's role in aging

Jul 24, 2013

With time, the amino acid known as asparagine will eventually degrade. Long considered a type of protein "damage," the phenomenon has come to be accepted as yet another part of aging: our hair turns gray, our joints begin ...

Recommended for you

Brand new technology detects probiotic organisms in food

5 hours ago

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

5 hours ago

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

23 hours ago

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0