Micro-gels from tiny ice algae play an important role in polar ocean carbon budgets

Sep 10, 2013
The ice algae secrete gel-like substances in response to environmental stress. New research show that this micro-gel play an important role in polar ocean carbon budgets. Credit: David N. Thomas

Secretion of polysaccharides from the micro community living within the sea ice stick organism together and forms greater particles introducing a rapid transport of carbon to the seafloor. New research now makes it possible to forecast the importance for the global carbon budget of this transport.

A community of and bacteria thrives within the Arctic and Antarctic pack ice. These ice-organisms are adapted to growing on the ice crystal surfaces and within a labyrinth of channels and pores that permeate the ice floes.

It is a hostile place to grow with temperatures often at -10°C to -20°C, low light and within six or seven times more salty brines in the ice channels compared to the underlying seawater from where these organisms originate.

Many secrete gel-like substances in response to environmental stress, and these ice-dwellers are no exception. In fact they secrete large quantities of gels that are made up from various types of .

A new study released in Proceedings of the National Academy of Science, now demonstrate that these gels from ice-microorganisms are important in both the Arctic and Antarctic. It is likely that they will not only affect the physical structure within the ice but also how carbon travels to the and even the weather.

Sticky masses

The gels promote the clumping together of cells when they are released from the ice when it melts. These sticky masses fall more rapidly to the sea floor, taking carbon (and food) out of the surfaces waters.

Desolate white landscapes are home to an unexpectedly active biology. Credit: David N. Thomas

There is also evidence that micro-gels at the may get caught up into the air and eventually act as cloud condensing nuclei thereby affecting weather. The gels therefore have for both the long-term burial of carbon to the ocean floor and thus the and on the weather.

Since 2006 Professor Graham Underwood & Dr Shazia Aslam from University of Essex and Professor David Thomas from Arctic Research Centre, Aarhus University have led several projects (funded by the Natural Environment Research Council, UK) to study the production of micro-gels, and their widespread importance to the frozen realms of the worlds oceans. They teamed up with colleagues from Australia and Canada to collect and analyse ice cores from both the Arctic and Antarctic.

Seven years on, and many frozen trips later, they now publish a rather surprising finding. Analysing ice data spanning ice from both the Arctic and Antarctic, they are now able to determine the amounts of gel production from the ice microbes based on data of the physical nature of the ice and the amount of microbiology.

"It means that we can estimate the concentration of gels in ice, by knowing rather routine measurements such as the thickness of the ice floes, temperature and salinity of the ice and the quantity of ice biology measured as the chlorophyll content of the ice," says Professor David Thomas, Arctic Research Centre, Aarhus University.

"This is a huge step forwards to enable us to estimate the significance of these materials to the millions of square kilometres of Antarctic and Arctic pack ", says Thomas.

Explore further: Sediment wedges not stabilizing West Antarctic Ice Sheet

More information: GJC Underwood, S Aslam, C Michel, A Niemi, L Norman, KM Meiners, J Laybourn-Parry, H Paterson & DN Thomas. 2013. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice. Proceedings of the National Academy of Sciences of the United States of America, DOI: 10.1073/pnas.1302870110

add to favorites email to friend print save as pdf

Related Stories

Sediment wedges not stabilizing West Antarctic Ice Sheet

Sep 03, 2013

The stability of the West Antarctic Ice Sheet is uncertain as climate changes. An ice sheet such as the West Antarctic Ice Sheet that is grounded well below sea level on a bed that slopes toward the interior of the sheet ...

Declining sea ice to lead to cloudier Arctic: study

Mar 31, 2012

Arctic sea ice has been declining over the past several decades as global climate has warmed. In fact, sea ice has declined more quickly than many models predicted, indicating that climate models may not be correctly representing ...

Antarctic sea ice thickness affects algae populations

Dec 18, 2012

In the waters off Antarctica, algae grow and live in the sea ice that surrounds the southern continent-a floating habitat sure to change as the planet warms. As with most aquatic ecosystems, microscopic algae form the base ...

Study predicts an ice-free Arctic by the 2050s

Aug 08, 2013

(Phys.org) —Accelerated climate warming propelled by greenhouse gas emissions could bring an ice-free September to the Arctic by 2054, a University at Albany scientist predicts.

Recommended for you

Canada to push Arctic claim in Europe

5 hours ago

Canada's top diplomat will discuss the Arctic with his Scandinavian counterparts in Denmark and Norway next week, it was announced Thursday, a trip that will raise suspicions in Russia.

Severe drought is causing the western US to rise

10 hours ago

The severe drought gripping the western United States in recent years is changing the landscape well beyond localized effects of water restrictions and browning lawns. Scientists at Scripps Institution of ...

A NASA satellite double-take at Hurricane Lowell

10 hours ago

Lowell is now a large hurricane in the Eastern Pacific and NASA's Aqua and Terra satellites double-teamed it to provide infrared and radar data to scientists. Lowell strengthened into a hurricane during the ...

User comments : 0