New methods increases food and bioenergy production from cassava

Sep 24, 2013

New ways to utilize starch from cassava can provide food to an additional 30 million people without taking more arable land than today. By 2030 the figure will be 100 million. In addition, the same land can also contribute to an increased production of bioenergy. This is shown in a new study from researchers at the Swedish University of Agricultural Sciences (SLU) and China Agricultural University (CAU).

Cassava or manioc (Manihot esculenta Crantz.) is grown for its high starch content. The large tubers are very starchy and processed into flour or semolina (tapioca). This is the for between 0.5-1 billion people in Africa, Latin America and Asia. The plant is grown on about 19 million hectares of land.

There are also strong interests to increase the use of cassava starch for industrial use. This can reduce the amount of or result in even more land being utilized for production.

Researchers at SLU and CAU have found that discarded stems contain surprisingly large amounts of starch, up to 30% of dry mass. In today's production the stems are removed from plantations and are considered a waste problem.

With simple water-based technologies, up to 15% of starch stem dry weight can be extracted. If this starch can be used for industrial purposes, root starch previously used industrially can provide food for an additional 30 million people in the world today and close to 100 million in 2030.

The study also shows that residues and process for the extraction of stem starch can be used for the production of biofuels ( and ) and provide substantial added values. Without land use increases, the researchers show that food and in combination can contribute to sustainable development and to combat malnutrition and poverty globally.

"There is great potential with the new ideas about using cassava stems as an industrial commodity, rather than as today a waste problem. We were actually surprised to find such large amounts of nutritious starch in a biomass residue, mostly stored in xylem tissues of the stems," says Associate Professor Shaojun Xiong, who is leading the research in this field.

The study is published in the latest issue of the prestigious journal Global Change Biology Bioenergy.

Explore further: Study on pesticides in lab rat feed causes a stir

Related Stories

Team creates potential food source from non-food plants

Apr 16, 2013

A team of Virginia Tech researchers has succeeded in transforming cellulose into starch, a process that has the potential to provide a previously untapped nutrient source from plants not traditionally thought ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

14 hours ago

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

17 hours ago

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

19 hours ago

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

20 hours ago

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.