New magnetic semiconductor material holds promise for 'spintronics'

Sep 10, 2013

Researchers at North Carolina State University have created a new compound that can be integrated into silicon chips and is a dilute magnetic semiconductor – meaning that it could be used to make "spintronic" devices, which rely on magnetic force to operate, rather than electrical currents.

The researchers synthesized the new compound, strontium (Sr3SnO), as an epitaxial thin film on a silicon chip. Epitaxial means the material is a single crystal. Because Sr3SnO is a dilute magnetic semiconductor, it could be used to create transistors that operate at room temperature based on magnetic fields, rather than .

"We're talking about cool transistors for use in spintronics," says Dr. Jay Narayan, John C. Fan Distinguished Professor of Materials Science and Engineering at NC State and senior author of a paper describing the work. "Spintronics" refers to technologies used in solid-state devices that take advantage of the inherent "spin" in electrons and their related magnetic momentum.

"There are other materials that are dilute , but researchers have struggled to integrate those materials on a , which is essential for their use in multifunctional, smart devices," Narayan says. "We were able to synthesize this material as a single crystal on a ."

"This moves us closer to developing spin-based devices, or spintronics," says Dr. Justin Schwartz, co-author of the paper, Kobe Steel Distinguished Professor and Department Head of the Materials Science and Engineering Department at NC State. "And learning that this material has magnetic semiconductor properties was a happy surprise."

The researchers had set out to create a material that would be a topological insulator. In topological insulators the bulk of the material serves as an , but the surface can act as a highly conductive material – and these properties are not easily affected or destroyed by defects in the material. In effect, that means that a topological insulator material can be a conductor and its own insulator at the same time.

Two materials are known to be topological insulators – bismuth telluride and bismuth selenide. But theorists predicted that other materials may also have topological insulator properties. Sr3SnO is one of those theoretical materials, which is why the researchers synthesized it. However, while early tests are promising, the researchers are still testing the Sr3SnO to confirm whether it has all the characteristics of a topological insulator.

Explore further: First in-situ images of void collapse in explosives

More information: The paper, "Epitaxial integration of dilute magnetic semiconductor Sr3SnO with Si (001)," was published online Sept. 9 in Applied Physics Letters.

Related Stories

Engineers show feasibility of superfast materials

Feb 13, 2013

(—University of Utah engineers demonstrated it is feasible to build the first organic materials that conduct electricity on their edges, but act as an insulator inside. These materials, called ...

Researchers forward quest for quantum computing

May 23, 2013

Research teams from UW-Milwaukee and the University of York investigating the properties of ultra-thin films of new materials are helping bring quantum computing one step closer to reality.

Recommended for you

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

Jul 24, 2014

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

User comments : 0