LISA Pathfinder: From CAD models to ready-to-fly hardware

Sep 02, 2013

LISA Pathfinder space mission reached another important milestone: Its heart, the optical bench, was now further integrated into the core assembly of the satellite. Dr Christian Killow (Scottish Universities Physics Alliance Advanced Fellow) said, "It is rewarding to see CAD models turning into real hardware!"

The optical bench was built and tested at the Institute for Gravitational Research (IGR) in Glasgow. Since its delivery from IGR to Astrium Germany it was tested again and then integrated into the LISA Technology Package – the satellite´s core that will prove key technologies for the eLISA mission.

"Getting LISA Pathfinder's core ready to go operational means that we have just completed another crucial step. We are now firmly on course for a launch in 2015", says Prof. Karsten Danzmann, director at the Max Planck Institute for Gravitational Physics and head of the Institute for Gravitational Physics at the Leibniz Universität Hannover.

Now a lot of effort goes into the final documentation. This is a crucial part, because the ongoing integration of the optical bench will be performed by other teams. Additionally the documentation will enable the operations centre to interpret the received data during the mission, which will be launched in 2015.

LISA Pathfinder is an ESA technology test mission that aims to prove essential key technologies for future -based gravitational-wave observatories, which cannot be tested on Earth, but only in space. For this purpose, one laser arm of a planned large gravitational wave mission, like eLISA (evolved Laser Interferometer Space Antenna), is reduced from millions of kilometres to 40 cm to fit into a single spacecraft.

This video is not supported by your browser at this time.

Paving the way

LISA Pathfinder is paving the way for a large-scale space mission designed to detect one of the most elusive phenomena in astronomy – . Extreme precision is required to detect the tiny ripples in the fabric of space and time predicted by Albert Einstein. A direct detection of gravitational waves will add a new sense to our perception of the Universe: for the first time we will be able to LISTEN to the Universe because gravitational waves are similar to sound waves. Hence gravitational wave astronomy will complement our understanding of the Universe and its evolution. Gravitational waves measured by a large mission in space will allow us to e.g. trace the formation, growth, and merger history of massive black holes. Also it will enable us to confront General Relativity with observations, and it will probe new physics and cosmology with gravitational waves.

International collaboration

LPF is an ESA led mission. It involves European space companies and research institutes from France, Germany, Italy, The Netherlands, Spain, Switzerland and UK and the US space agency NASA.

The concept and details of the optical system for LISA Pathfinder have been developed at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) in Hanover, Germany. Its director Karsten Danzmann is Co-Principal Investigator of the mission and shares the scientific leadership with Stefano Vitale, University of Trento, Italy.

The Institute for Gravitational Research (IGR) from University of Glasgow played a major role in defining the interferometer elements and the breadboard model of LISA Pathfinder. For building the flight interferometer IGR scientists developed precision alignments at a sub-micron level used to mount components onto the optical bench. IGR scientists also designed and manufactured a highly stable fibre collimator, which aligns the laser beams.

Explore further: Closing in on Einstein's window to the universe

add to favorites email to friend print save as pdf

Related Stories

Measuring the universe

Aug 25, 2010

A unique antenna which could help unveil a new window on the universe by observing thousands of gravitational waves should be one of NASA's next space missions according to a group of leading US experts.

Closing in on Einstein's window to the universe

Aug 01, 2013

(Phys.org) —Nearly a century after the world's greatest physicist, Albert Einstein, first predicted the existence of gravitational waves, a global network of gravitational wave observatories has moved a ...

Recommended for you

The source of the sky's X-ray glow

15 hours ago

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

End dawns for Europe's space cargo delivery role

Jul 27, 2014

Europe will close an important chapter in its space flight history Tuesday, launching the fifth and final robot ship it had pledged for lifeline deliveries to the International Space Station.

Giant crater in Russia's far north sparks mystery

Jul 26, 2014

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

Jul 26, 2014

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Bacteria manipulate salt to build shelters to hibernate

Jul 25, 2014

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

How do we terraform Venus?

Jul 25, 2014

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

User comments : 0