Iron in the sun: A greenhouse gas for X-ray radiation

Sep 06, 2013
Illustration of the inner structure of the Sun: The energy released by nuclear fusion of hydrogen to helium in the Sun’s core is transported outwards via radiation. In the outer shell energy transfer is dominated by convection. Credit: Kelvinsong, Wikimedia Commons

( —Scientists from the Heidelberg Max Planck Institute for Nuclear Physics (MPIK) in cooperation with DESY (Hamburg) at the synchrotron PETRA III have investigated for the first time X-ray absorption of highly charged iron ions. A transportable ion trap developed at MPIK was used for generation and storage of the ions. The high-precision measurements provide important new insight into the role of highly charged ions in astrophysical plasmas, e. g. for radiation transport inside stars.

Highly charged ions - that is, atoms which have been stripped off most of their electrons - play an important role in astrophysics. Within the large accumulations of visible (luminous) matter in the universe, the highly charged state is the natural one. This is the case in stellar atmospheres as well as in the interior of stars, where temperatures of several million degrees Celsius rule. Highly charged ions also abound around exotic objects such as or . Before matter plunges into their cores, it delivers gravitational energy, heating up and emitting extremely intense X-rays, which can be observed.

X-rays also determine the energy transport inside the Sun. At its core temperature of 15 million degrees, a natural runs with a total capacity of about 4·1026 watts. The of 200 watts per cubic meter is, however, modest, and corresponds to about that of a compost heap. In contrast to such, the Sun is very large. If the solar core would freely radiate X-rays at those temperatures, a power exceeding the yield by 11 orders of magnitude would be lost. The sun works because the radiation transport to the outside is inhibited, thus maintaining the high core temperature. Convection, the by turbulent upstream flows of hot matter, only takes place further outward, starting at about 70% of the solar radius. This good insulation reduces hydrogen consumption and extends the duration of fusion in our central star to the billions of years that are needed for the formation of a stable planetary system, and ultimately for the development of life.

A measure of the inhibition of radiation transport is the 'opacity' of the solar matter, a term describing how efficiently radiation is absorbed by it. Although the Sun consists mainly of hydrogen and helium, these elements only play a secondary role for the opacity. Their share of it diminishes from about 50% in the outer core to below 20% in the radiation zone. Crucial there are the tiny impurities (about 1.6% by mass) of heavier elements, dubbed by astronomers 'metals'. Besides oxygen, iron, with its mass fraction of only 0.14%, plays for X-rays the role of a greenhouse gas, and contributes about a quarter of the total opacity. To illustrate it: the total amount of iron in the sun would reach for a solid wall of about 100 km thickness at the edge of the radiation zone, at 500,000 km radius. As a dilute impurity in the solar plasma, iron takes a substantial role in the X-ray shielding.

Transportable trap for highly charged ions (EBIT) in operation at the X-ray laser LCLS (Stanford Linear Accelerator Center, Menlo Park, California, USA). Credit: J. R. Crespo López-Urrutia, MPIK

In order to better understand the role of these stellar 'trace gases' and obtain reliable data for comparison with astronomical observations, physicists in the team of José R. Crespo López-Urrutia from the Heidelberg Max Planck Institute for Nuclear Physics (MPIK) have prepared, in cooperation with colleagues from DESY (Hamburg) and eight other institutions worldwide, highly charged in eight different charge states and studied them systematically. PhD student Jan Rudolph and his colleagues installed a mobile electron beam ion trap (EBIT) for the production and storage of highly charged ions at the PETRA III storage ring. This facility provides one of the world's most powerful X-ray beams, which was focused onto the trapped ions and tuned in its energy. In this way, the absorption of the X-ray radiation by the iron ions could be measured for the first time, and with high precision. This new laboratory astrophysical data show a good agreement with the latest theoretical calculations. In addition to the characteristic energies of the absorption lines found in the spectra, their natural line width (for the first time measured in this experiment) is also very important, because it determines the maximum radiant power which a single iron ion can handle. It amounts almost one watt per ion for the observed X-ray transitions. Even within the solar core, iron ions are not yet saturated with respect to radiation transport, because they can absorb and emit X-ray photons a million times faster than normal atoms can do with the much less energetic visible photons. This combination of high rates and high photon energy crucially determines the dominance of iron in the solar radiation balance.

The new data provide valuable insights for the opacity calculations that can be used as the basis of stellar models. In addition, they also help in the diagnostics of astrophysical plasmas, such as those surrounding active galactic nuclei, or in binary systems containing compact objects - such as neutron stars or black holes - accreting matter from the partner star. The iron X-ray lines studied here are usually the last spectroscopic witnesses of such processes.

Explore further: Exomoons Could Be Abundant Sources Of Habitability

More information: Rudolph, J. et al., X-Ray Resonant Photoexcitation: Linewidths and Energies of K? Transitions in Highly Charged Fe Ions, Physical Review Letters 111, 103002 (2013). DOI: 10.1103/PhysRevLett.111.103002

Related Stories

Physicists produce black hole plasma in the lab

Nov 04, 2010

( -- Black holes are voracious: They devour large amounts of matter from gas clouds or stars in their neighbourhood. As the incoming "food" spirals faster and faster into the abyss, it becomes ...

X-ray laser takes aim at cosmic mystery

Dec 12, 2012

Scientists have used powerful X-rays from the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, to study and measure, in atomic detail, a key process at work in extreme plasmas ...

Aqueous iron interacts as strong as solid iron

Jul 06, 2012

German scientists have applied a new method -- "inverse Partial Fluorescence Yield" (iPFY) on micro-jet -- which will enable them to probe the electronic structure of liquids free of sample damages. The experiments ...

New type of cosmic ray discovered after 100 years

Oct 16, 2012

(—Using the European X-ray astronomy satellite XMM-Newton, researchers from CNRS and CEA have discovered a new source of cosmic rays. In the vicinity of the remarkable Arches cluster, near the ...

Heating the solar wind

Apr 03, 2013

( —The Sun glows with a surface temperature of about 5500 degrees Celsius. Meanwhile its hot outer layer (the corona) has a temperature of over a million degrees, and ejects a wind of charged particles ...

A star explodes, turns inside-out

Mar 29, 2012

( -- A new X-ray study of the remains of an exploded star indicates that the supernova that disrupted the massive star may have turned it inside out in the process. Using very long observations ...

Recommended for you

Big black holes can block new stars

40 minutes ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

POLARBEAR seeks cosmic answers in microwave polarization

50 minutes ago

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

New radio telescope ready to probe

3 hours ago

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

Exomoons Could Be Abundant Sources Of Habitability

Oct 20, 2014

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability. What size planet could host life? How far ...

Partial solar eclipse over the U.S. on Thursday, Oct. 23

Oct 17, 2014

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

A newborn supernova every night

Oct 17, 2014

Thanks to a $9 million grant from the National Science Foundation and matching funds from the Zwicky Transient Facility (ZTF) collaboration, a new camera is being built at Caltech's Palomar Observatory that ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Sep 07, 2013
Please refrain from using metaphors like this "greenhouse gas" analogy because it only serves to confuse non scientific people. I know the authors were vying for attention but its a two edged sword that only turns off a lot of people and in the process confuses them. Look at the confusion surrounding the "greenhouse" effect re climate change as proof positive. Scientists held in high esteem holding public opinion power must use it wisely!