Identification of a plant-specific nanomachine regulating nuclear movement

September 5, 2013
Figure 1: A nucleus (green) in Arabidopsis root hair. Cell wall is counterstained with propidium iodide (magenta). Bar = 20 µm.

A group led by Professor Ikuko Hara-Nishimura (Department of Botany, Graduate School of Science) revealed the molecular mechanism underlying nuclear movement in plants.

The communicates with the cytoplasm through a nucleocytoplasmic linker that maintains the shape of the nucleus and mediates its movement. In plant cells, nuclei move large distances along the , often undergoing shape changes as they move. They move more rapidly than animal nuclei by an unknown mechanism. The group discovered that a new type of nucleocytoplasmic linker consisting of a and nuclear in plants. This study was published in the online version of Current Biology on August 22, 2013 (US Eastern time).

Figure 2: Nuclear movement in root of wild-type (left) and kaku1-1 mutant (right). Nuclei at 0, 22.5, and 45 min time points are stained with red, blue and green, respectively, and three images are merged.

Nucleus is the most prominent organelle and contains the cell's genetic material that directs cellular activity (Figure 1). In contrast to animal nuclei, which are moved by (kinesins and dyneins) along the microtubule cytoskeleton, plant nuclei move rapidly and farther along an actin filament cytoskeleton. This implies that plants use a distinct nucleocytoplasmic linker for nuclear dynamics, although its molecular identity is unknown. To identify this mechanism, the group took a forward genetics approach with Arabidopsis. A mutant with abnormal nuclear shapes and a defect in nuclear movement was isolated and designated as kaku1-1, after the Japanese word for nucleus. In the kaku1 mutant, nuclear movement was impaired (Figure 2) and the nuclear envelope was abnormally invaginated. The responsible gene was identified as myosin XI-i, which encodes a plant-specific myosin. Myosin XI-i is specifically localized on the nuclear membrane, where it physically interacts with the outer-nuclear-membrane proteins WIT1 and WIT2. Both WIT proteins are required for anchoring myosin XI-i to the nuclear membrane and for nuclear movement (Figure 3).

Figure 3: A plant-specific nanomachine regulating the nuclear movment. Myosin XI-i is associated with nuclear membrane proteins to control the nuclear movement.

A striking feature of plant cells is dark-induced nuclear positioning in mesophyll cells. A deficiency of either myosin XI-i or WIT proteins diminished dark-induced nuclear positioning. Notably, the plant-specific myosin XI family members, which are conserved widely in land plants, generate high motive forces. Together, these results suggest that plants have evolved a unique machinery involving actin and a myosin motor that enables rapid and long-distance nuclear movement and nuclear positioning in response to environmental stimuli.

Explore further: Chromosomes make a rapid retreat from nuclear territories

More information: Tamura, K. et al. Myosin XI-i Links the Nuclear Membrane to the Cytoskeleton to Control Nuclear Movement and Shape in Arabidopsis, Current Biology, 22 August 2013. dx.doi.org/10.1016/j.cub.2013.07.035

Related Stories

Chromosomes make a rapid retreat from nuclear territories

January 13, 2010

Chromosomes move faster than we first thought. Research published in BioMed Central's open access journal, Genome Biology, details new findings about the way chromosomes move around the nucleus when leaving the proliferative ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.