Water hidden in the Moon may have proto-Earth origin

Sep 10, 2013
Earth’s Moon, as imaged by the Galileo mission. Credit: NASA/JPL/USGS

Water found in ancient Moon rocks might have actually originated from the proto-Earth and even survived the Moon-forming event. Latest research into the amount of water within lunar rocks returned during the Apollo missions is being presented by Jessica Barnes at the European Planetary Science Congress in London on Monday 9th September.

The Moon, including its interior, is believed to be much wetter than was envisaged during the Apollo era. The study by Barnes and colleagues at The Open University, UK, investigated the amount of water present in the mineral apatite, a mineral found in samples of the ancient lunar crust.

"These are some of the oldest rocks we have from the Moon and are much older than the oldest rocks found on Earth. The antiquity of these rocks make them the most appropriate samples for trying to understand the water content of the Moon soon after it formed about 4.5 billion years ago and for unravelling where in the Solar System that water came from," Barnes explains.

Barnes and her colleagues have found that the ancient contain appreciable amounts of water locked into the crystal structure of apatite. They also measured the hydrogen of the water in these lunar rocks to identify the potential source(s) for the water.

"The water locked into the mineral apatite in the Moon rocks studied has an isotopic signature very similar to that of the Earth and some carbonaceous chondrite meteorites," says Barnes. "The remarkable consistency between the hydrogen composition of lunar samples and water-reservoirs of the Earth strongly suggests that there is a common origin for water in the Earth-Moon system."

Explore further: Image: Comet 67P/Churyumov–Gerasimenko

Related Stories

Water on the moon: It's been there all along

Feb 18, 2013

Traces of water have been detected within the crystalline structure of mineral samples from the lunar highland upper crust obtained during the Apollo missions, according to a University of Michigan researcher ...

Moon whets appetite for water

Jun 14, 2010

Scientists at the Carnegie Institution's Geophysical Laboratory, with colleagues, have discovered a much higher water content in the Moon's interior than previous studies. Their research suggests that the ...

Recommended for you

Image: Comet 67P/Churyumov–Gerasimenko

2 hours ago

It was 45 years ago when astronomer Klim Churyumov and Svetlana Gerasimenko, one of his researchers, unwittingly began a new chapter in the history of space exploration.

Extreme ultraviolet image of a significant solar flare

2 hours ago

The sun emitted a significant solar flare on Oct. 19, 2014, peaking at 1:01 a.m. EDT. NASA's Solar Dynamics Observatory, which is always observing the sun, captured this image of the event in extreme ultraviolet ...

Heavy metal frost? A new look at a Venusian mystery

21 hours ago

Venus is hiding something beneath its brilliant shroud of clouds: a first order mystery about the planet that researchers may be a little closer to solving because of a new re-analysis of twenty-year-old ...

Hot explosions on the cool sun

Oct 20, 2014

(Phys.org) —The Sun is more spirited than previously thought. Apart from the solar eruptions, huge bursts of particles and radiation from the outer atmosphere of our star, also the cooler layer right below ...

User comments : 6

Adjust slider to filter visible comments by rank

Display comments: newest first

rug
1 / 5 (9) Sep 10, 2013
More evidence for the Giant impact hypothesis. Sure really proof but at least evidence.

Then again, if the Earth and Moon formed in the same orbit it would be likely they would be made of the same material.

OK, fine, it's not really evidence for Theia. However, it does not rule it out either.

Either way, it's a rather interesting find.
tadchem
1 / 5 (2) Sep 10, 2013
The original cloud of matter from which the solar system condensed was neither homogeneous, nor were the various substances segregated. It is certain that when the cloud cooled sufficiently water would have condensed as liquid or solid, but it is also certain that as other substances condensed, such as oxides or carbonates of alkali metals and alkaline earths, water vapor would have co-condensed with them forming hydrates and/or hydroxides.
rug
1 / 5 (9) Sep 10, 2013
The original cloud of matter from which the solar system condensed was neither homogeneous, nor were the various substances segregated.

I would like to know where got this information. Judging by the planets it would seem it was rather segregated. Some planets have higher concentrations of certain elements than others. Spend a bit of time poking around here and you will see that to be the case. http://solarsyste...ndex.cfm
Torbjorn_Larsson_OM
not rated yet Sep 11, 2013
They bump up the wetness of the mantle from a range 0.06 - 5 ppm in earlier estimates [ http://en.wikiped.../Apatite ] to 1-5 ppm [ http://meetingorg...-105.pdf ]

This compares to Earth mantle water under pressure of 250 - 700 ppm, ~ 100 times more. [ http://minmag.geo...abstract ]

Presumably the volatile mass ratio mirrors the gravitational reassembly after the Tellus-Theia impact vaporization, where the mass ratio is ~ 1 % ( ~ 1/80).

@rug: As you say, more evidence rather than definite evidence. Alternates aren't yet ruled out. But they are no longer fruitful AFAIK, as the impact hypothesis is, they don't get new support at all. So this can be seen as the remaining practically viable alternative.
Torbjorn_Larsson_OM
not rated yet Sep 11, 2013
It should be 1-6 ppm in the new estimate. The comment box editor was giving me problems, so I mistyped in the last iteration.
rug
1 / 5 (8) Sep 11, 2013
@rug: As you say, more evidence rather than definite evidence. Alternates aren't yet ruled out. But they are no longer fruitful AFAIK, as the impact hypothesis is, they don't get new support at all. So this can be seen as the remaining practically viable alternative.

Upto and including when a new better theory comes to light. That is always a possibility.