Graphene photodetector integrated into computer chip

Sep 16, 2013
The light signal arrives throuth a waveguide (left), in the 2 micrometer wide graphene sheet, electrical current is generated.

The novel material graphene and its technological applications are studied at the Vienna University of Technology. Now scientists succeeded in combining graphene light detectors with semiconductor chips.

Today, most information is transmitted by light – for example in optical fibres. Computer chips, however, work electronically. Somewhere between the optical data highway and the , photons have to be converted into electrons using light-detectors. Scientists at the Vienna University of Technology have now managed to combine a photodetector with a standard . It can transform light of all important frequencies used in telecommunications into . The scientific results have now been published in the journal Nature Photonics.

Computing power made of carbon?

Both academia and the industry place high hopes in graphene. The material, which consists of a single layer of hexagonally arranged , has extraordinary properties. Two years ago, the team around Thomas Müller (Institute of Photonics, Vienna University of Technology) demonstrated that graphene is ideally suited to turn light into electrical current. "There are many materials that can transform light into electrical signals, but graphene allows for a particularly fast conversion", says Thomas Müller. So wherever large amounts of data are to be transmitted in a short period of time, graphene will in the future probably be the material of choice.

The researchers had to come a long way from the basic proof of what the material can do to actually using it in a chip – but now they succeeded. The Viennese team worked together with researchers from the Johannes Kepler University in Linz.

"A narrow waveguide with a diameter of about 200 by 500 nanometers carries the optical signal to the graphene layer. There, the light is converted into an electrical signal, which can then be processed in the chip", Thomas Müller explains.

Graphene - a two dimensional sheet made of carbon atoms - can convert light into electrical current.

Versatile and compact

There have already been attempts to integrate photodetectors made of other materials (such as Germanium) directly into a chip. However, these materials can only process light of a specific wavelength range. The researchers could show that graphene can convert all wavelengths which are used in telecommunications equally well.

The graphene photodetector is not only extremely fast, it can also be built in a particularly compact way. 20 000 detectors could fit onto a single chip with a surface area of one square centimetre. Theoretically, the chip could be supplied with data via 20 000 different information channels.

More speed, less energy

"These technologies are not only important for transmitting data over large distances. Optical data transmission also becomes more and more important for communication within computers", says Thomas Müller. When large computer clusters work with many processor cores at the same time, a lot of information has to be transferred between the cores. As graphene allows switching between optical and electrical signals very quickly, this data can be exchanged optically. This speeds up the data exchange and requires much less electrical energy.

Explore further: Photonics: Graphene boosts on-chip light detectors

More information: www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2013.240.html

Related Stories

Photonics: Graphene boosts on-chip light detectors

Sep 16, 2013

The fabrication of high-performance light detectors—important for computers and mobile devices—using graphene integrated onto a chip is reported in three independent studies published online this week ...

New material promises faster electronics

Jun 28, 2011

The novel material graphene makes faster electronics possible. Scientists at the Faculty of Electrical Engineering and Information Technology at the Vienna University of Technology (TU Vienna) developed light-detectors ...

Express tool for graphene quality control

Aug 29, 2013

The National Physical Laboratory (NPL) has collaborated with Chalmers University of Technology and Linköping University in Sweden to help develop a fast and inexpensive tool for quality control of graphene ...

Graphene on its way to conquer Silicon Valley

Jul 09, 2013

The remarkable material graphene promises a wide range of applications in future electronics that could complement or replace traditional silicon technology. Researchers of the Electronic Properties of Materials ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

11 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.