Fermilab sends first neutrino beam to NOvA experiment

Sep 17, 2013 by Kathryn Jepsen
Fermilab sends first neutrino beam to NOvA experiment
The first modules of the NOvA detector in Minnesota, still under construction, are taking data.

DOE's Fermilab has switched on its newly upgraded neutrino beam, soon to be the most intense in the world. The laboratory spent the past 15 months upgrading its accelerator complex in preparation for the NOvA experiment, which will study neutrinos using a 200-ton particle detector at Fermilab and a 14,000-ton detector in northern Minnesota.

Neutrinos are light, that rarely interact with other matter. About a decade ago, scientists discovered that neutrinos must have mass, but they must weigh at least a million times less than electrons. The NOvA experiment aims to determine which of the three known types of neutrinos is the heaviest and which is the lightest. To do that, Fermilab will send intense neutrino beams through the earth to the huge NOvA detector in Minnesota.

Fermilab scientists and engineers have reconfigured the accelerator complex to halve the time it takes to accelerate bunches of protons and slam them into a carbon target. The teams updated the radio-frequency cavities that boost the proton's energy, the kicker magnets that guide them, and the target they crash into—a collision that releases a spray of other particles. They've replaced one of the two magnetic horns that focus the spray of particles before it decays and produces neutrinos.

The first modules of the NOvA detector in Minnesota, still under construction, are now taking data. The construction of the NOvA detector will be complete in 2014. Two other neutrino experiments, MINOS+ and Minerva, benefit from the improved as well.

Explore further: Galaxy dust findings confound view of early Universe

add to favorites email to friend print save as pdf

Related Stories

Test paves way for 15,000-ton neutrino detector

Dec 13, 2011

Last month, the preparations for the assembly of the NOvA neutrino detector passed a pivotal test in an assembly building at the Department of Energy’s Fermi National Accelerator Laboratory.

New results confirm standard neutrino theory

Feb 16, 2010

(PhysOrg.com) -- In its search for a better understanding of the mysterious neutrinos, a group of experimenters at DOE’s Fermi National Accelerator Laboratory has announced results that confirm the theory ...

Recommended for you

Galaxy dust findings confound view of early Universe

Jan 31, 2015

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

Building the next generation of efficient computers

Jan 29, 2015

UConn researcher Bryan Huey has uncovered new information about the kinetic properties of multiferroic materials that could be a key breakthrough for scientists looking to create a new generation of low-energy, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (3) Sep 19, 2013
[q ] Neutrinos are light, neutral particles that rarely interact with other matter. About a decade ago, scientists discovered that neutrinos must have mass, but they must weigh at least a million times less than electrons. The NOvA experiment aims to determine which of the three known types of neutrinos is the heaviest and which is the lightest….

Anyway, if we could visualize what the neutrinos look like and how they were created (as something below) together with the experiment, then it would help the research.
http://www.vacuum...=9〈=en

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.