Exotic isotopes step on the scale

Sep 06, 2013
Figure 1: The multi-reflection time-of-flight mass spectrograph is designed to measure the masses of short-lived, heavy isotopes. The heart of the spectrometer is a long trap with electrostatic ‘mirrors’ on either end. Credit: 2013 American Physical Society

Elements heavier than iron are believed to have formed in supernovae or merging neutron stars through a series of complex nuclear reactions. Nuclear physicists are working to recreate these reactions by performing simulations, but such studies rely on highly precise masses for the relevant isotopes—many of which can only be created using high-energy accelerators. Michiharu Wada and colleagues from the RIKEN Nishina Center for Accelerator-Based Science in Wako have now demonstrated the utility of a new mass spectrograph at the Radioactive Isotope Beam Factory (RIBF) for measuring the masses of short-lived exotic isotopes.

Wada and colleagues built what is called a multi-reflection time-of-flight mass spectrograph (Fig. 1), which captures isotopes produced by the RIBF and slows them to a well-defined before measuring the ratio of their mass to charge based on the time it takes to travel a known distance.

As the precision of the measurement improves the longer the distance travelled by the isotope, the researchers created a long, yet compact, trap by introducing electric-field 'mirrors' on either end to force the isotopes to bounce back and forth. Isotopes make several hundred roundtrips before they are released to a detector that registers the time elapsed in the trap.

In their first test, Wada and his team successfully measured the mass of singly ionized lithium-8 with an uncertainty of only 0.66 parts per million over a time-of-flight time of just 8 milliseconds. This isotope serves as a worst-case scenario for the spectrograph, which is optimized to study heavier isotopes with half-lives of 10–100 milliseconds.

In addition to studying short-lived isotopes relevant to astrophysical processes, the team plans to use the spectrograph to study isotopes heavier than uranium at the RIBF's gas-filled recoil ion separator (GARIS) facility. "Precise and systematic mass measurements of these are an important prerequisite for exploring the 'island of stability', which is predicted to lie beyond the known super-heavy elements," says Wada.

One of the key advantages of installing the new mass spectrograph at the RIBF is the fact that it can be used to measure nuclei that can't be created anywhere else in the world. "RIKEN's forthcoming slow radioactive nuclear ion beam facility, SLOWRI, will provide low-energy beams of all elements," says Wada. "The expected number of nuclides that will be available is the largest among existing beam facilities in the world."

Explore further: Scientists create possible precursor to life

More information: Ito, Y., et al. Single-reference high-precision mass measurement with a multireflection time-of-flight mass spectrograph, Physical Review C 88, 011306(R) (2013). dx.doi.org/10.1103/PhysRevC.88.011306

add to favorites email to friend print save as pdf

Related Stories

The importance of fundamental measurements

May 04, 2011

At the Radioactive Isotope Beam Facility (RIBF) of the RIKEN Nishina Center for Accelerator Science in Wako, a research team has measured the time it takes for 38 extremely rare isotopes to decay by half. ...

CERN's ISOLTRAP reveals new magic in the atomic nucleus

Jun 20, 2013

(Phys.org) —The ISOLTRAP collaboration has measured the mass of exotic calcium nuclei using a new instrument installed at the ISOLDE facility at CERN. The measurements, published on 20 June in the journal Nature, clearl ...

Solar system's youth gives clues to planet search

Jul 24, 2013

Comets and meteorites contain clues to our solar system's earliest days. But some of the findings are puzzle pieces that don't seem to fit well together. A new set of theoretical models from Carnegie's Alan Boss shows how ...

Recommended for you

Cold Atom Laboratory creates atomic dance

15 hours ago

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Scientists create possible precursor to life

22 hours ago

How did life originate? And can scientists create life? These questions not only occupy the minds of scientists interested in the origin of life, but also researchers working with technology of the future. ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

User comments : 0