Understanding the forces that shape the Earth

Sep 11, 2013
Understanding the forces that shape the Earth
Credit: Shutterstock

Subduction is the process occurring where the Earth's tectonic plates meet - and one plate slides beneath the other, taking surface material to its interior. This process leads to a large variety of phenomena at the Earth's surface, ranging from volcanism to the deepest and most destructive earthquakes.

However, many aspects of subduction are still poorly understood. Research is critical to understanding where such forces could lead to human disasters. It could also help answer basic questions on the chemical and thermal history of our planet.

Running from 2007 to 2011, the EU-funded project C2C ('Crust to core: the fate of subducted material') was aimed at creating a working European research network that would advance the basic understanding of the subduction process.

Led by the University of Bayreuth, the researchers identified key questions for further research and improved coordination and cooperation among leading research groups in the study of subduction.

The project brought together eleven partner institutions all over Europe with expertise in petrology, experimental and computational , analysis, synthesis, and dynamic studies of the Earth's interior.

The team's research focused on source mechanisms for earthquakes, the transport of fluids through the mantle, and the extraction of magma from the Earth's interior.

Understanding the controlling mechanisms of these phenomena requires a good characterisation of the physical properties of minerals involved and the environment of the Earth's mantle with which they interact.

The C2C team addressed a number of specific questions, including the:

- role of arc volcanism volatiles, such as water and CO2;
- melting behaviour of carbon-bearing rocks, mostly sediments;
- stability of carbonates (MgCO3-FeCO3-CaCO3) at high pressure;
- composition of fluids released in .

One outcome with a huge potential for advancing knowledge on how life started on Earth resulted from an investigation of the dissolution of Fe-carbonate FeCO3 (siderite) in an aqueous solution.

Researchers discovered a redox reaction with the simultaneous formation of organic molecules. Such a reaction could have played an important role in the origin of life on Earth.

Aside from its scientific achievements, the C2C network also contributed significantly to training young researchers. A number of the key participants were Marie Curie Fellows, carrying out doctoral or initial post-doctoral work.

The C2C project received around EUR 2.6 million in EU funding.

Explore further: Mexico's Volcano of Fire blows huge ash cloud

More information: cordis.europa.eu/projects/rcn/82454_en.html

add to favorites email to friend print save as pdf

Related Stories

Studying ancient Earth's geochemistry

Jan 18, 2013

Researchers still have much to learn about the volcanism that shaped our planet's early history. New evidence from a team led by Carnegie's Frances Jenner demonstrates that some of the tectonic processes driving volcanic ...

New 'embryonic' subduction zone found

Jun 17, 2013

(Phys.org) —A new subduction zone forming off the coast of Portugal heralds the beginning of a cycle that will see the Atlantic Ocean close as continental Europe moves closer to America.

Study sheds light on Earth's early mantle

May 06, 2013

(Phys.org) —An international team of researchers, led by scientists at Boston University's Department of Earth and Environment, has found evidence that material contained in young oceanic lava flows originated ...

Recommended for you

Biology trumps chemistry in open ocean

1 hour ago

Single-cell phytoplankton in the ocean are responsible for roughly half of global oxygen production, despite vast tracts of the open ocean that are devoid of life-sustaining nutrients. While phytoplankton's ...

Underwater robot sheds new light on Antarctic sea ice

6 hours ago

The first detailed, high-resolution 3-D maps of Antarctic sea ice have been developed using an underwater robot. Scientists from the UK, USA and Australia say the new technology provides accurate ice thickness ...

Damage caused by geothermal probes is rare

8 hours ago

Soil settlements or upheavals and resulting cracks in monuments, floodings, or dried-up wells: Reports about damage caused by geothermal probes have made the population feel insecure. In fact, the probability ...

Extreme shrimp may hold clues to alien life

10 hours ago

(Phys.org) —At one of the world's deepest undersea hydrothermal vents, tiny shrimp are piled on top of each other, layer upon layer, crawling on rock chimneys that spew hot water. Bacteria, inside the shrimps' ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.