Drug patch treatment sees new breakthrough

Sep 07, 2013

Wake Forest School of Biomedical Engineering has developed a flexible microneedle patch that allows drugs to be delivered directly and fully through the skin. The new patch can quicken drug delivery time while cutting waste, and can likely minimize side-effects in some cases, notable in vaccinations and cancer therapy.

News of the delivery technology was published in a recent issue of the scientific journal, Advanced Materials.

Leading development of the flexible patch was Lissett Bickford, now an assistant professor and researcher of biomedical engineering and the mechanical engineering, both part of the Virginia Tech College of Engineering. Work on the technology was completed while Bickford was a post-doctoral research associate at the University of North Carolina Chapel Hill.

Microneedle patch technology used on the skin has existed for several years, each patch containing an array of hundreds of micron-sized needles that pierce the skin and dissolve, delivering embedded therapeutics. However, because of their rigid , the patches proved difficult in fully piercing into the skin, creating a waste of drug material and a slowed delivery time. Additionally, the patches also have been difficult to produce in bulk; typical fabrication procedures have required .

Bickford, with her research team, including Chapel Hill graduate student Katherine A. Moga, were able to develop a new flexible patch that forms to the skin directly – think a regular household bandage – and then fully pierces the skin and dissolves. Bickford said the softer, more malleable and water-soluble material also allows for more over the shape, size, and composition of the patch, with little to no waste.

The nanoparticle, micro-molding is based on Particle Replication In Non-wetting Templates (PRINT for short) technology, developed by University of North Carolina researcher and professor Joseph DeSimone. Unlike other methods for making these patches, the new technology allows for quicker and greater wide-scale production, reducing related costs.

Explore further: College students use 'smart' technology in football helmets to detect injuries

Related Stories

E-health made easier—and more comfortable

Apr 17, 2013

The future of health care could be found in a tiny, paper-thin skin patch that collects vital information. The Bio-patch sensor developed by researchers at Stockholm's KTH Royal Institute of Technology is ...

Recommended for you

Building a machine that sorts candy colors with iPhone

Dec 23, 2014

The very idea of a machine being able to color-sort M&Ms teases an inventor's imagination and interest in machines, electronics and programming. A person with a website called "reviewmylife" had heard about ...

Laser technology aids CO2 storage capabilities

Dec 23, 2014

DOE's National Energy Technology Laboratory is attracting private industry attention and winning innovation awards for harnessing the power of lasers to monitor the safe and permanent underground storage ...

FAA, industry launch drone safety campaign

Dec 22, 2014

Alarmed by increasing encounters between small drones and manned aircraft, drone industry officials said Monday they are teaming up with the government and model aircraft hobbyists to launch a safety campaign.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.