Diversity of microbial growth strategies in a limited nutrient world

Sep 17, 2013

The budding yeast, Saccharomyces cerevisiae, is a prime organism for studying fundamental cellular processes, with the functions of many proteins important in the cell cycle and signaling networks found in human biology having first been discovered in yeast.

Now, scientists from New York University have now developed a sophisticated assay to track cell growth at very low nutrient concentrations. The assay uses time-lapse microscopy to monitor individual undergoing a small number of divisions to form microcolonies. The assay can measure the lag times and growth rates of as many as 80,000 individual microcolonies in a single 24-hour experiment, opening up a powerful new high-throughput tool to study the complex interplay between cell growth, division and metabolism under environmental conditions that are likely to be ecologically relevant but had previously been difficult to study in the laboratory.

The researchers studied growth rates and lag times in both lab strains and wild yeast by varying the amount of its prime carbon , glucose. They confirmed the prediction made over 60 years ago by Noble-prize-winning biologist Jacques Monod regarding changes in microbial growth rates with limited nutrients (the Monod equation). They also found significant differences among strains in both the average lag response (the amount of time it takes to transition from cell to restarting cell growth) and average growth rates in response to different environmental conditions.

In addition to average differences between strains and conditions, the powerful assay revealed among cells of the same strain in the same environment. Moreover, yeast strains differed in their variances in growth rate. According to the study's lead author, Naomi Ziv, "Heterogeneity among genetically identical cells in the same environment is a topic of increasing interest in biology and medicine. The different strain variances we see suggest that the extent of nongenetic heterogeneity is itself genetically determined."

Further investigations could pave the way to a more complete understanding of the genetics and metabolomics of cell growth in yeast and the underlying mechanisms relevant to other settings in which cells face challenging conditions, such as cancer progression and the evolution of drug resistance.

Explore further: A microbe's trick for staying young

More information: To access the full online article: http://mbe.oxfordjournals.org/content/early/2013/08/11/molbev.mst138.abstract

add to favorites email to friend print save as pdf

Related Stories

A microbe's trick for staying young

Sep 12, 2013

Researchers have discovered a microbe that stays forever young by rejuvenating every time it reproduces. The findings, published in Current Biology, provide fundamental insights into the mechanisms of aging.

Unlocking secrets of cell reproduction

May 23, 2013

Research published in Open Biology today identifies, for the first time, nearly all the genes required for reproduction of a cell in a living organism.

Recommended for you

Illuminating the dark side of the genome

3 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

User comments : 0