Discovery of cell division 'master controller' may improve understanding and treatment of cancer

Sep 11, 2013

In a study to be published in the journal Nature, two Dartmouth researchers have found that the protein cyclin A plays an important but previously unknown role in the cell division process, acting as a master controller to ensure the faithful segregation of chromosomes during cell division.

Cell division is the process in which cells reproduce by splitting into two identical copies. This process happens trillions of times in an average person's lifetime. To generate two identical copies, cells must separate their precisely, an event that relies on the bi-oriented attachment of chromosomes to spindle through specialized structures called kinetochores. In the early phases of division, there are numerous errors in how kinetochores bind to microtubules. Normal cells efficiently correct these errors so that chromosomes segregate faithfully. However, generally do not correct these errors, resulting in with abnormal numbers of chromosomes, which may help these cancer cells develop resistance to chemotherapy treatments.

In their study, Dartmouth researchers Lilian Kabeche, PhD, and Duane Compton, PhD, show that microtubule attachments at kinetochores are very unstable in early phases of division. The unstable attachments promote the correction of errors by causing a constant detachment, realignment and reattachment of microtubules from kinetochores in the cells as they try to find the correct attachment. Their study found that the protein cyclin A governs this process by keeping the process going until the errors are eliminated.

"An analogy for this process could be dating," said Compton, Senior Associate Dean for Research and professor of biochemistry at Dartmouth's Geisel School of Medicine. "The chromosomes are testing the microtubules for compatibility—that is, looking for the right match—to make sure there are correct attachments and no errors. The old view of this process held that chromosomes and microtubules pair up individually to find the correct attachment, like conventional dating. However, our results show that the system is more like speed dating. All the chromosomes have to try many connections with microtubules in a short amount of time. Then they all make their final choices at the same time. Cyclin A acts like a timekeeper or referee to make sure no one makes bad connections prematurely."

In normal cells, persistent cyclin A expression prevents the stabilization of microtubules bound to kinetochores even in cells with aligned chromosomes. As levels of cyclin A decline, microtubule attachments become stable, allowing the chromosomes to be divided correctly as proceeds. In contrast, in cyclin A-deficient cells, microtubule attachments are prematurely stabilized. Consequently, these cells may fail to correct errors, leading to higher rates of chromosome mis-segregation.

"Many cancer cells continuously mis-segregate their chromosomes," says Kabeche. "The major cause is improper kinetochore–microtubule attachments. Therefore, understanding how kinetochore–microtubule attachments are regulated throughout cell division is important, not only for furthering our understanding of cell division, but also for allowing us to correct these problems in cancer ."

Explore further: The team of proteins that could have implications for the fight against cancer

More information: Paper: www.nature.com/nature/journal/… ull/nature12507.html

Related Stories

Molecular forces are key to proper cell division

Jan 21, 2013

Studies led by cell biologist Thomas Maresca at the University of Massachusetts Amherst are revealing new details about a molecular surveillance system that helps detect and correct errors in cell division ...

Researchers identify potential cancer target

Jan 16, 2009

(PhysOrg.com) -- Dartmouth Medical School researchers have found two proteins that work in concert to ensure proper chromosome segregation during cell division. Their study is in the January 2009 issue of ...

Fishing games gone wrong

Aug 18, 2011

When an egg cell is being formed, the cellular machinery which separates chromosomes is extremely imprecise at fishing them out of the cell's interior, scientists at the European Molecular Biology Laboratory ...

Recommended for you

Brand new technology detects probiotic organisms in food

13 hours ago

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

14 hours ago

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0