How chromosome ends influence cellular aging

Sep 11, 2013

By studying processes that occur at the ends of chromosomes, a team of Heidelberg researchers has unravelled an important mechanism towards a better understanding of cellular aging. The scientists focused on the length of the chromosome ends, the so-called telomeres, which can be experimentally manipulated. Their research, which was conducted at the Center for Molecular Biology of Heidelberg University (ZMBH), allows for new approaches in the development of therapies for tissue loss and organ failure associated with senescence (cellular aging). The research results may also be significant for cancer treatment. They were recently published in the journal Nature Structural & Molecular Biology.

Each cell contains a set of in which the vast majority of our genetic information is stored in the form of DNA. This information must be protected to ensure the proper functioning of the cell. To achieve this, the very ends of the chromosomes, the , play an important role in protecting the chromosomal DNA from being degraded. "We can imagine that telomeres are analogous to the plastic caps at the ends of our shoelaces. Without them, the ends of the laces get frayed and eventually the entire shoelace does not function properly," explains Dr. Brian Luke. His research group at the ZMBH is primarily focused on understanding how telomeres protect DNA.

It is well known in the scientific community that telomeres shorten every time a cell divides and eventually become so short that they can no longer protect the chromosomes. The unprotected chromosome ends send signals that stop the cell from dividing further, a state referred to as "senescence". Senescent cells occur more frequently as we age, which can contribute to tissue loss and . "In certain diseases, patients already have very short telomeres at birth and as a result they experience severe tissue loss and organ dysfunction at an early age", says the Heidelberg scientist.

The research group headed by Dr. Luke has now discovered that turning transcription on or off at telomeres can have drastic effects on their length. Transcription is the process of making an RNA molecule from DNA. It has only recently been shown to occur at telomeres, but the functional significance of this discovery has remained a mystery. Molecular biologists Bettina Balk and André Maicher were now able to show that the RNA itself is the key regulator that drives telomere length changes, especially when it sticks to telomeric DNA to make a so-called "RNA-DNA hybrid molecule".

"We experimentally changed the amount of RNA-DNA hybrids at the . We can thus either accelerate or diminish the rate of cellular senescence directly by affecting telomere length," explains Bettina Balk. According to André Maicher, this could be a first step towards telomere-based therapies for tissue loss or organ failure. With respect to diseases, it remains to be determined whether altering transcription rates at telomeres does indeed improve health status. This approach is also significant for cancer cells, which do not senesce and are thus considered immortal. "Transcription-based telomere length control may therefore also be applicable to ," Dr. Luke emphasizes.

Explore further: Newly discovered weakness in cancer cells make them more susceptible to chemotherapy

More information: Balk, B. et al. Telomeric RNA-DNA hybrids affect telomere length dynamics and senescence, Nat. Struct. Mol. Biol, 8 September 2013. DOI: 10.1038/nsmb.2662

Related Stories

Telomere length influences cancer cell differentiation

Jun 27, 2013

Researchers from the Japanese Foundation for Cancer Research in Tokyo have discovered that forced elongation of telomeres (extensions on the end of chromosomes) promotes the differentiation of cancer cells, probably reducing ...

Molecular VELCRO for chromosome stability

Jun 05, 2013

(Phys.org) —A team of scientists at the Friedrich Miescher Institute for Biomedical Research and the University of Geneva has functionally dissected the molecular processes that ensure the stability of ...

Ultra short telomeres linked to osteoarthritis

Jan 16, 2012

Telomeres, the very ends of chromosomes, become shorter as we age. When a cell divides it first duplicates its DNA and, because the DNA replication machinery fails to get all the way to the end, with each successive cell ...

Recommended for you

Researchers discover new strategy germs use to invade cells

22 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

23 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0