Chemical synthesis: A simple technique for highly functionalized compounds

Sep 25, 2013
Oxidative nitration of alkene 1a to produce ɣ-lactol (2a) and nitrate ester (3a).

The addition of functional groups to certain unsaturated hydrocarbons, known as alkenes, is a crucial stage in the synthesis of various compounds, including many plastics. For these functionalization reactions to occur a carbon-hydrogen (C-H) bond must be activated, which is traditionally achieved using transition metal catalysts. However use of these catalysts has both economical and environmental drawbacks. Now researchers at Kanazawa University have demonstrated a technique that allows direct functionalization of alkenes without the need for metallic reagents, photolysis or extreme reaction conditions.

Tsuyoshi Taniguchi and colleagues at Kanazawa University developed work where they had reported a reaction of alkenes using tert-butyl nitrite and . They monitored the reaction products—?-lactol and nitrate ester—using different solvents, and found that a high polarity aprotic (hydrogen-free) solvent gave the best yield, with ?-lactol as the major product.

They then experimented with different alkenes and observed how the products differed for branched and linear alkenes. Further reduction reactions demonstrated how the new could yield a range of useful derivatives, producing highly functionalized compounds from simple alkenes in only one or two steps.

The researchers were also able to propose a possible reaction mechanism. While the exact pathway remains uncertain, they suggest that the key step is the cleavage of an oxygen-oxygen bond to form a highly reactive alkoxy radical – a molecular component comprising an oxygen with single bonds either side to .

The work demonstrates how substantial yields of highly functionalized compounds can be achieved from simple organic molecules in simple conditions with no . The authors conclude, "We believe that such 'simple and advanced reactions' are promising in the development of useful synthetic methods involving direct C–H functionalization."

Explore further: Catalytic tandem reaction for conversion of lignin and bio-oil by hydroxylation of phenols to form arenes

More information: Taniguchi, T. et al. Multifunctionalization of alkenes via aerobic oxynitration and sp3 C–H oxidation, Chem. Commun, 49 (2013) 2198-2200.

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

User comments : 0

More news stories

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.