When cells 'eat' their own power plants: Scientists solve mystery of cellular process

Sep 30, 2013

A mix of serendipity and dogged laboratory work allowed a diverse team of University of Pittsburgh scientists to report in the Oct. 1 issue of Nature Cell Biology that they had solved the mystery of a basic biological function essential to cellular health.

By discovering a mechanism by which – tiny structures inside cells often described as "power plants" – signal that they are damaged and need to be eliminated, the Pitt team has opened the door to potential research into cures for disorders such as Parkinson's disease that are believed to be caused by dysfunctional mitochondria in neurons.

"It's a survival process. Cells activate to get rid of bad mitochondria and consolidate good mitochondria. If this process succeeds, then the good ones can proliferate and the cells thrive," said Valerian Kagan, Ph.D., D.Sc., a senior author on the paper and professor and vice chair of the Pitt Graduate School of Public Health's Department of Environmental and Occupational Health. "It's a beautiful, efficient mechanism that we will seek to target and model in developing new drugs and treatments."

Dr. Kagan, who, as a recipient of a Fulbright Scholar grant, currently is serving as visiting research chair in science and the environment at McMaster University in Ontario, Canada, likened the process to cooking a Thanksgiving turkey.

"You put the turkey in the oven and the outside becomes golden, but you can't just look at it to know it's ready. So you put a thermometer in, and when it pops up, you know you can eat it," he said. "Mitochondria give out a similar 'eat me' signal to cells when they are done functioning properly."

Cardiolipins, named because they were first found in heart tissue, are a component on the inner membrane of mitochondria. When a mitochondrion is damaged, the cardiolipins move from its inner membrane to its outer membrane, where they encourage the cell to destroy the entire mitochondrion.

However, that is only part of the process, says Charleen T. Chu, M.D., Ph.D., professor and the A. Julio Martinez Chair in Neuropathology in the Pitt School of Medicine's Department of Pathology, another senior author of the study. "It's not just the turkey timer going off; it's a question of who's holding the hot mitt to bring it to the dining room?" That turns out to be a protein called LC3. One part of LC3 binds to cardiolipin, and LC3 causes a specialized structure to form around the mitochondrion to carry it to the digestive centers of the cell.

The research arose nearly a decade ago when Dr. Kagan had a conversation with Dr. Chu at a research conference. Dr. Chu, who studies autophagy, or "self-eating," in Parkinson's disease, was seeking a change on the mitochondrial surface that could signal to LC3 to bring in the damaged organelle for recycling. It turned out they were working on different sides of the same puzzle.

Together with Hülya Bay?r, M.D., research director of pediatric critical care medicine, Children's Hospital of Pittsburgh of UPMC and professor, Pitt's Department of Critical Care Medicine, and a team of nearly two dozen scientists, the three senior authors worked out how the pieces of the mitochondria signaling problem fit together.

Now that they've worked out the basic mechanism, many more research directions will likely follow, said Dr. Chu.

"There are so many follow-up questions," she said. "What is the process that triggers the cardiolipin to move outside the mitochondria? How does this pathway fit in with other pathways that affect onset of diseases like Parkinson's? Interestingly, two familial Parkinson's disease genes also are linked to mitochondrial removal."

Dr. Bayir explained that while this process may happen in all cells with mitochondria, it is particularly important that it functions correctly in neuronal cells because these cells do not divide and regenerate as readily as in other parts of the body.

"I think these findings have huge implications for brain injury patients," she said. "The mitochondrial 'eat me' signaling process could be a therapeutic target in the sense that you need a certain level of clearance of damaged mitochondria. But, on the other hand, you don't want the clearing process to go on unchecked. You must have a level of balance, which is something we could seek to achieve with medications or therapy if the body is not able to find that balance itself."

Explore further: Genetic mutations linked to Parkinson's disease

More information: www.nature.com/ncb/journal/vao… nt/full/ncb2837.html

Related Stories

Genetic mutations linked to Parkinson's disease

Aug 11, 2013

Researchers have discovered how genetic mutations linked to Parkinson's disease might play a key role in the death of brain cells, potentially paving the way for the development of more effective drug treatments.

Unleashing the watchdog protein

May 09, 2013

McGill University researchers have unlocked a new door to developing drugs to slow the progression of Parkinson's disease. Collaborating teams led by Dr. Edward A. Fon at the Montreal Neurological Institute and Hospital -The ...

Why do neurons die in Parkinson's disease?

Nov 10, 2011

Current thinking about Parkinson's disease is that it's a disorder of mitochondria, the energy-producing organelles inside cells, causing neurons in the brain's substantia nigra to die or become impaired. A study from Children's ...

Missing link in Parkinson's disease found

Apr 25, 2013

Researchers at Washington University School of Medicine in St. Louis have described a missing link in understanding how damage to the body's cellular power plants leads to Parkinson's disease and, perhaps ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

User comments : 0