New way to put the brakes on cancer found

September 9, 2013

While great strides have been achieved in cancer treatment, scientists are looking for the new targets and next generation of therapeutics to stop this second leading cause of death nationwide. A new platform for drug discovery has been developed through a collaborative effort linking chemists at NYU and pharmacologists at USC.

In a study appearing in Proceedings of the National Academy of Sciences, the research groups of Paramjit Arora, a professor in NYU's Department of Chemistry, and Bogdan Olenyuk from the USC School of Pharmacy have developed a , "protein domain mimetic," which targets the interaction between two proteins, called transcription factor-coactivator complex at the point where intracellular signaling cascade converges resulting in an up-regulation of genes that promote tumor progression.

This approach presents a new frontier in cancer research and is different from the typical search for small molecules that target cellular kinases.

The synthetic molecule that the paper describes—HBS 1—is based on chemically stabilized secondary structure of a protein that is mimicking specific fold, called ?-helix ,- and shows outstanding potential for suppression of tumor growth. This compound was specifically designed to interrupt the type of molecular conversation within cell (called cell signaling) that promotes growth of . Creation of HBS 1 required a method for locking correct helical shapes in synthetic strings of – a method previously developed at NYU.

The studies conducted at NYU and USC show that the molecule disrupted the cancer cell signaling network and reached the correct target in the cell to provide a rapid blockade of tumor growth. Importantly, the compounds did not show any signs of toxicity or negative impact in the test host.

While the in vivo experiments in this research were conducted using renal , the principles of this design are applicable to many human conditions, including other cancers, cardiovascular diseases, and diabetic complications. The general concept of the study, the interruption of the connection between genes as they conspire to promote cancer growth, is general and applicable to the protein cell to protein cell "conversations" implicated in a host of human diseases.

Explore further: Researchers develop compound to block signaling of cancer-causing protein

More information: Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling, www.pnas.org/cgi/doi/10.1073/pnas.1312473110

Related Stories

Researchers develop new method for tracking cell signaling

July 10, 2013

Researchers at Memorial Sloan-Kettering Cancer Center, together with collaborators in Germany, have developed a new method for identifying the cell of origin of intracellular and secreted proteins within multicellular environments.

Recommended for you

Why cryptophyte algae are really good at harvesting light

December 8, 2016

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons ...

Chemical trickery corrals 'hyperactive' metal-oxide cluster

December 8, 2016

After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that's required ...

Oxygen can wake up dormant bacteria for antibiotic attacks

December 8, 2016

Bacterial resistance does not come just through adaptation to antibiotics, sometimes the bacteria simply go to sleep. An international team of researchers is looking at compounds that attack bacteria's ability to go dormant ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.