Brown dwarf companion stars

September 2, 2013
Brown dwarf companion stars
The 1.4 billion pixel camera of the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS). Astromomers have used the system to study young brown dwarf stars in binary orbits around more normal young stars. Credit: Pan-STARRS

(Phys.org) —Astronomers trying to understand how the Sun and Earth formed, and why they have their characteristic properties, have made progress on a closely related problem: the nature of the lowest mass stars, so-called "brown dwarfs." These stars have masses of less than about 8% of the Sun's mass. They are basically failed normal stars, and lack a sufficient force of gravitational contraction to heat up their interiors to the roughly ten million kelvin temperatures needed for hydrogen burning (hydrogen burning fuels the Sun). Not surprisingly they are extremely faint and hard to detect, and as a consequence our understand of their evolution and interior properties is incomplete. Theorists predict that there could be as many brown dwarf stars as there are normal stars.

CfA Adam Kraus has joined with eight colleagues to use the Pan-STARRS1 survey (the Panoramic Survey Telescope & Rapid Response System) and an infrared survey (UKIDSS) to search in a young, 5-10 million year-old star forming region for brown dwarfs. Pan-STARRS is a wide-field imaging telescope that combines a relatively small mirror, only 1.8-meters, with a very large digital camera, about 1.4 billion pixels, to survey the sky on a continuous basis. The prototype single-mirror telescope PS1 has been operating on Mount Haleakala, Hawaii, since 2010; eventually there will be four such systems working in concert.

The astronomers were studying the very early stages of brown dwarf development, and to help obtain reliable age estimates they used these surveys to search for objects that were in a binary systems with young stars whose ages might be more tightly constrained, thus constraining the brown dwarf ages as well. The survey was able to picked out objects whose cool temperatures and reddish colors signaled that they were brown dwarfs, and the team discovered 673 binaries with candidate brown dwarf companions. Spectroscopic follow-up observations on four of them allowed the team to reach several conclusions: These companion brown dwarfs are infrequent, making up only about 0.6% of binaries, at least for those in which the stars are widely spaced (closer pairs were much more difficult to study).

More puzzling, the scientists found that the brown dwarf companions are well enough understood to conclude that they did not form at the same time as their more normal, companion star. The puzzling result highlights the theoretical uncertainties in our understanding of brown dwarfs, while the new technique promises many more objects to begin the task of modeling. Meanwhile, the team has begun studying brown dwarfs in more normally spaced binaries, where they could be mistaken for large planets.

Explore further: Brown Dwarfs Don't Hang Out With Stars

More information: Aller, K. et al. A Pan-STARRS + UKIDSS Search for Young, Wide Planetary-Mass Companions in Upper Scorpius, ApJ 773, 63, 2013.

Related Stories

Brown Dwarfs Don't Hang Out With Stars

January 5, 2009

(PhysOrg.com) -- Brown dwarfs, objects that are less massive than stars but larger than planets, just got more elusive, based on a study of 233 nearby multiple-star systems by NASA's Hubble Space Telescope. Hubble found only ...

Binary white dwarf stars

May 4, 2011

(PhysOrg.com) -- When a star like our sun gets to be very old, after another seven billion years or so, it will no longer be able to sustain burning its nuclear fuel.

Two new brown dwarf Solar neighbors discovered

July 15, 2011

Scientists from the Leibniz Institute for Astrophysics Potsdam (AIP) have discovered two new brown dwarfs at estimated distances of only 15 and 18 light years from the Sun. For comparison: The next star to the Sun, Proxima, ...

Astrophysicists uncover secret origin of brown dwarfs

April 26, 2012

The origin of brown dwarfs is one of the great unsolved mysteries facing astrophysicists today. In a new study published in The Astrophysical Journal, Western’s Shantanu Basu and University of Vienna’s Eduard ...

Ultra-cool companion helps reveal giant planets

May 10, 2012

(Phys.org) -- An international team of astronomers led by David Pinfield of the University of Hertfordshire has found a brown dwarf that is more than 99% hydrogen and helium. Described as ultra-cool, it has a temperature ...

Recommended for you

New Horizons data hint at underground ocean

July 30, 2015

Pluto wears its heart on its sleeve, and that has scientists gleaning intriguing new facts about its geology and climate. Recent data from NASA's New Horizons probe—which passed within 7,800 miles of the surface on July ...

Unusual red arcs spotted on icy Saturn moon Tethys

July 30, 2015

Like graffiti sprayed by an unknown artist, unexplained arc-shaped, reddish streaks are visible on the surface of Saturn's icy moon Tethys in new, enhanced-color images from NASA's Cassini spacecraft.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

First detection of lithium from an exploding star

July 29, 2015

The chemical element lithium has been found for the first time in material ejected by a nova. Observations of Nova Centauri 2013 made using telescopes at ESO's La Silla Observatory, and near Santiago in Chile, help to explain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.