Brown algae reveal antioxidant production secrets

Sep 05, 2013
Photograph of Ascophyllum nodosum, another brown alga very rich in phlorotannins. Credit: © Philippe Potin, Station Biologique Roscoff.

Brown algae contain phlorotannins, aromatic (phenolic) compounds that are unique in the plant kingdom. As natural antioxidants, phlorotannins are of great interest for the treament and prevention of cancer and inflammatory, cardiovascular and neurodegenerative diseases. Researchers at the Végétaux marins et biomolécules (CNRS/UPMC) laboratory at the Station biologique de Roscoff, in collaboration with two colleagues at the Laboratoire des sciences de l'Environnement MARin (Laboratory of Marine Environment Sciences) in Brest (CNRS/UBO/IFREMER/IRD) have recently elucidated the key step in the production of these compounds in Ectocarpus siliculosus, a small brown alga model species. The study also revealed the specific mechanism of an enzyme that synthesizes phenolic compounds with commercial applications. These findings have been patented and should make it easier to produce the phlorotannins presently used as natural extracts in the pharmaceutical and cosmetic industries. The results have also been published online on the site of the journal The Plant Cell.

Until now, extracting phlorotannins from for use in industry was a complex process, and the biosynthesis pathways of these compounds were unknown. By studying the first genome sequenced from a brown alga, the team in Roscoff identified several genes homologous to those involved in phenolic compound biosynthesis in . Among these genes, the researchers found that at least one was directly involved in the synthesis of phlorotannins in brown algae. They then inserted these genes into a , which thus produced a large quantity of the enzymes that could synthesize the desired phenolic compounds. One of these enzymes, a type III polyketide synthase (PKS III), was studied in detail and revealed how it produces phenolic compounds. PKS III is able, for example, to synthesize phloroglucinol (notably used in antispasmodic drugs and in explosives) and other with commercial applications.

Besides this mechanism, results revealed that the compounds had other biological functions in the acclimation and adaptation of brown algae to salinity stress. Knowledge of these biosynthesis pathways would allow researchers to uncover the signaling mechanisms that regulate this metabolism. It would also be useful for understanding the biological and ecological functions of these compounds in other brown algae that are already used commercially.

This work was initiated with the support of the scientific interest group (GIS) Europole Mer. It culminated in the creation of IDEALG, a project launched in September 2011 as part of France's Investments for the Future program and led by the Station Biologique de Roscoff. IDEALG is a 10-year research scheme involving more than one hundred scientists. It aims to find biotechnology applications for genomic and post-genomic research, as well as exploit marine macroalgal bioresources. A CNRS patent has been filed and in-depth work on structural biology and controlled mutagenesis is being pursued as part of IDEALG. It should lead to new paths for protein engineering, which will make it possible to produce molecules of interest directly and more easily. This will be achieved using bacteria, thus avoiding the production of plant organic matter (biomass), whose purification is hampered by the difficult extracting process of natural phlorotannins.

Explore further: How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass?

More information: Meslet-Cladiere, L. et al. Analysis of a Type III Polyketide Synthase Function and Structure in the Brown Alga Ectocarpus siliculosus Reveals a Previously Unknown Biochemical Pathway in Phlorotannin Monomer Biosynthesis, Plant Cell, 27/08/2013. dx.doi.org/10.1105/tpc.113.111336

add to favorites email to friend print save as pdf

Related Stories

Why red algae never colonized dry land

Mar 21, 2013

The first red alga genome has just been sequenced by an international team coordinated by CNRS and UPMC at the Station Biologique de Roscoff (Brittany), notably involving researchers from CEA-Genoscope, the ...

Hunting for new genes by sequencing seas samples

Jun 27, 2013

(Phys.org) —Mass DNA sequencing has led to a better knowledge of marine micro-organisms in their environment and helps to discover new genes of interests. However, it is only part of the answer for biotech ...

Dry onion skin has a use

Jul 14, 2011

More than 500,000 tonnes of onion waste are thrown away in the European Union each year. However, scientists say this could have a use as food ingredients. The brown skin and external layers are rich in fibre ...

Recommended for you

Quest to unravel mysteries of our gene network

22 hours ago

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.