How bedbugs shrug off pesticides and simple measures to deal with it

Sep 09, 2013

The bedbug's most closely guarded secrets—stashed away in protective armor that enables these blood-sucking little nasties to shrug off insecticides and thrive in homes and hotels—are on the agenda here today at a major scientific meeting.

In a talk at the 246th National Meeting & Exposition of the American Chemical Society (ACS), scientists are describing identification of the responsibe for in , and the implications for millions of people trying to cope with bedbug infestations that have been resurging for more than a decade.

The bedbug presentation is part of an international research award symposium at the ACS National Meeting, which includes 12 other research papers on topics ranging from pesticide resistance to monitoring chemicals in the environment to tick spit.

"Every living thing on Earth has a unique set of strategies to adapt to life-threatening situations in the environment," said Fang Zhu, Ph.D., a leader of the research who spoke at the meeting. "The surprise discovery we never expected is that most of the genes responsible for pesticide resistance in the bedbug are active in its outer skin-like shell or cuticle. This is the unique adaption that has not been discovered in cockroaches, termites, ants or other insects."

Zhu of Washington State University and colleagues, who are with the University of Kentucky, quickly realized that the location was the ideal spot for genes that mute the effects of pyrethroid insecticides—today's mainstay home and garden pesticides. The bodies of bedbugs, she explained, are extremely flat before the creatures slurp up a meal of human blood. That profile adapts bedbugs for a life of hiding in the seams of mattresses, upholstered chairs, the lining of suitcases and other concealed locations. But it also creates a vulnerability to environmental toxins, giving bedbugs an unusually large surface area where pesticides can enter their bodies. The shell is tough—and accounts for the difficulty in squashing a bedbug. But research by Zhu's team and others has established that it's also a metabolic hot spot to protect against insecticides. Some genes in the cuticle, for instance, produce substances that tear apart the molecular backbone of insecticides, rendering them harmless. Other genes manufacture biological pumps that literally pump insecticides back out of the cuticle before they can enter the body.

Zhu's team sifted through the bedbug's genome—its complete set of genes—to identify the genes responsible for this pesticide resistance. They studied 21 populations of bedbugs from cities in Ohio and Kentucky (Cincinnati, Lexington and Louisville) that were plagued with bedbug infestations.

"We took advantage of cutting-edge next-generation genetic sequencing technology that's now available. It enabled us to perform quickly an analysis that would have taken years in the 1990s—a genome-wide analysis of the insecticide-resistance related genes in bedbugs."

They found 14 genes that in various combinations help bedbugs survive pesticide treatments with pyrethroid-type insecticides. Most were active in the bug's cuticle, and block or slow an insecticide from reaching the nerve cells where it can kill. In addition to this first-line of defense, Zhu's team discovered that bedbugs have developed a second layer of protection. In case slip past the armor, other genes kick in to prevent the toxins from attacking the nervous system.

Zhu said the findings suggest that development of new pesticides should focus on chemicals that shut down or mute genes in the cuticle that thwart today's pesticides. New pesticides alone, however, will not be enough to cope with the bedbug resurgence. Zhu cited evidence that bedbugs in laboratory colonies exposed to lethal doses of pyrethroids begin to develop resistance within a few generations, which can be less than one year.

"It reminds us how quickly a new insecticide can become ineffective," she said. "In the future, efficient bedbug management should not rely on any single insecticide. We need to combine as many chemical and non-chemical approaches as we have to get rid of the infestation."

She cited, specifically, integrated pest management for bedbugs, approaches in which careful use of pesticides combines with other, common-sense measures. Those include removing bedroom clutter where bedbugs can hide, frequent vacuuming of dust and other debris, washing bed linens in hot water and heat-drying in a dryer, and sealing cracks and crevices to eliminate hiding places.

Explore further: Researchers detail newly discovered deer migration

More information: Abstract

Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides

The extensive use of insecticides accelerated the accumulation of resistance related factors in survivors. Therefore, studies on the molecular basis of these factors are of theoretical and applied importance in understanding the evolution of insecticide resistance and devising constructive resistance management tactics. The physiological and biochemical mechanisms of insecticide resistance may evolve along several trajectories. Typically, a combination of diverse mechanisms provides significantly higher levels of resistance than one individual mechanism. Recent advances in genomics and post-genomic technologies have facilitated a genome-wide analysis of the insecticide resistance-associated genes in insects. Through bed bug, Cimex lectularius, transcriptome analysis, we identified 14 molecular markers related to pyrethroid resistance. Our study revealed that most of the resistance-associated genes belonging to diverse mechanisms are expressed in the epidermal layer of the integument, which prevents or slows down the toxin from reaching the target sites on nerve cells, where an additional layer of resistance (kdr, knockdown resistance) is common. This strategy evolved in bed bugs is based on their unique morphological, physiological, and behavioral characteristics and has not been discovered in any other insect species. RNA interference-aided knockdown of these genes showed the relative contribution of each mechanism towards overall resistance development. Understanding of the complexity of adaptive strategy employed by bed bugs will help us to design the most effective and sustainable bed bug control methods.

add to favorites email to friend print save as pdf

Related Stories

Bedbugs: Easy to attract, hard to eliminate

Feb 09, 2013

(HealthDay)—Death, taxes ... and bedbugs? Infestations of bedbugs are on the rise in the United States and elsewhere, and while people are "bedbug magnets," the tiny pests are hard to detect, an expert ...

Battling the bedbug epidemic

Mar 09, 2011

"Sleep tight, don't let the bedbugs bite" -- is becoming an impossible dream for millions of people as the world experiences a resurgence of an ancient scourge that is fostering human misery, financial burdens and the risk ...

Recommended for you

Invasive vines swallow up New York's natural areas

3 hours ago

(Phys.org) —When Antonio DiTommaso, a Cornell weed ecologist, first spotted pale swallow-wort in 2001, he was puzzled by it. Soon he noticed many Cornell old-field edges were overrun with the weedy vines. ...

Citizen scientists match research tool when counting sharks

17 hours ago

Shark data collected by citizen scientists may be as reliable as data collected using automated tools, according to results published April 23, 2014, in the open access journal PLOS ONE by Gabriel Vianna from The University of Wes ...

Researchers detail newly discovered deer migration

Apr 23, 2014

A team of researchers including University of Wyoming scientists has documented the longest migration of mule deer ever recorded, the latest development in an initiative to understand and conserve ungulate ...

How Australia got the hump with one million feral camels

Apr 23, 2014

A new study by a University of Exeter researcher has shed light on how an estimated one million-strong population of wild camels thriving in Australia's remote outback have become reviled as pests and culled ...

Former Iron Curtain still barrier for deer

Apr 23, 2014

The Iron Curtain was traced by an electrified barbed-wire fence that isolated the communist world from the West. It was an impenetrable Cold War barrier—and for some inhabitants of the Czech Republic it ...

Humpback protections downgrade clears way for pipeline

Apr 22, 2014

Environmentalist activists on Tuesday decried Canada's downgrading of humpback whale protections, suggesting the decision was fast-tracked to clear a major hurdle to constructing a pipeline to the Pacific ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

hemitite
not rated yet Sep 09, 2013
The way that fleas are dealt with these days is mostly by giving ones pets a drug that makes their blood toxic to these pests. Why not try the same approach with humans and bed bugs?
Hunter56
1 / 5 (1) Oct 18, 2013
The drug that you talk about in most cases is also quite toxic to people and pets. The bedbug lives on blood and if he dies from it what will it do to you or your pet?
There is a product that is All natural, and has no toxins, chemicals, or pesticides in it so it is totally safe to use around people and pets. It has been proven by the Oklahoma state Universities Entomology department to have a 100% mortality on ALL life stages of bedbugs in 24 to 48 hours and works on many other insects as well. Spiders, cockroaches, and ticks to name a few. I can not give a name here and that is understandable so if someone would like to learn more please try and find a way to contact me.

More news stories

Breast cancer replicates brain development process

New research led by a scientist at the University of York reveals that a process that forms a key element in the development of the nervous system may also play a pivotal role in the spread of breast cancer.