Banishing explosive sparks in underground mines

Sep 18, 2013
Underground mining. Credit: Matthiashn. Licence: CC BY-NC-SA 2.0 /flickr

Vintage space technology was dug up recently to make mines around the world safer by reducing the risks of explosions.

Deep beneath Earth's surface, mining equipment is just like much other modern machinery – computer screens show the operators what's going on. Under ordinary circumstances, glass screens would be ideal.

But in a mine, "Glass is difficult, because it breaks too easily," says Johannes Koenig, an engineer at German mine-equipment manufacturer Marco Systemanalyse und Entwicklung GmbH.

Plastic screens, though, have a major drawback: they build up a static charge when touched, potentially creating a tiny spark like the one you get when you walk across a carpet then touch a metal door handle. 

In mines, sparks can be disastrous. That's because tunnels filled with clouds of fine coal or are explosions waiting to happen. So screens made of scratch-resistant plastic must be protected in some way.

Marco engineers worked with ESA Technology Transfer Network's MST Aerospace to find a solution. With MST's help, they connected with MAT PlasMATec GmbH in Dresden, Germany, who years ago developed coatings for .

"We saw that the coatings developed by PlasMATec for spacecraft could provide an intelligent solution to Marco's mine problem," saidDr Werner Dupont from MST Aerospace. 

Artist's impression of the ESA-NASA Solar and Heliospheric Observatory (SOHO). Credit: ESA

Space technology gets new life

PlasMATec's experience with stretches back to before the 1989 fall of the Berlin Wall. Engineer Andreas Mucha was part of a Soviet-era team that pioneered indium–tin oxides (ITOs) to coat lenses and windows for spacecraft.

Similar coatings were used later on ESA's SOHO satellite for thermal control of the payload pointing towards the Sun, and on Galileo's laser retroreflector array.

Now used in everything from and touch panels to , ITOs and can be applied to surfaces as a transparent, thin layer.

The aerospace use of the technique was first developed for a space camera built by Karl Zeiss Jena for the Soviet space programme. In 1976, the Soyuz-22 manned spacecraft carrying the East German MKF-6 multispectral sensor camera spent eight days in orbit, taking nearly 2500 pictures of Earth. Later, another MKF-6 camera was mounted on Russia's Mir space station.

Dr Mucha and his colleagues coated the MKF-6 lens with a very thin layer of ITO – just a few hundred nanometres thick – to give it a tiny bit of electromagnetic resistance. In space, the coating allowed the lens to be heated slightly via an electric current, to prevent condensation.

Russia’s Mir space station seen from Space Shuttle Atlantis during the approach for docking on 15 January 1997. Credit: NASA

Space experience was the right solution

PlasMATec's experience from Mir helped them to repurpose the transparent layer of and tin for Marco's mining equipment.

"We coated their polycarbonate screens with basically the same conductive iridium–tin oxide layer we once developed for the lens of the MKF-6 space camera," explained Dr Mucha.

The conductive coating prevents electrostatic charge from building up on the screen, in turn banishing sparks – and preventing underground explosions. 

Longwall mining is a form of underground coal mining where a long wall of coal is mined in a single slice, typically 0.6–1.0 m thick. The longwall panel – the block of coal that is being mined – is typically 3–4 km long and 250–400 m wide. Credit: M. Schweiss/Eickhoff Maschinenfabrik und Eisen/Wikipedia

"A conductive film gives the possibility to have no electrical charging – or sparks – if you brush it with your hands," Dr Mucha said. "It's a different purpose than for space, but the same process."

MST Aerospace is the German partner in ESA's Technology Transfer Network set up by the Agency's Technology Transfer Programme Office in 13 European countries, supporting non-space industry to identify solutions among the thousands of ready available space technologies.

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Mars and the machine

Apr 23, 2013

Without hi-tech magnetic sensors, rovers wouldn't be able to roam around Mars. These same sensors will soon boost terrestrial travel by improving the machinery that moulds parts for cars and aircraft here ...

Researchers inaugurate ultra-fast satellite computer

Aug 08, 2013

One of the quickestand most compact satellite computers in the work was inaugurated today at the University of Stuttgart. The computer is the centrepiece of the ultra-modernsmall satellite platform "Flying ...

Space sensor helps produce 'greener' glass

May 03, 2011

What has making glass in common with space exploration? The special technology to measure oxygen atoms outside space vehicles is now being used in the glass industry to produce super-efficient energy-saving ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.