Banishing explosive sparks in underground mines

Sep 18, 2013
Underground mining. Credit: Matthiashn. Licence: CC BY-NC-SA 2.0 /flickr

Vintage space technology was dug up recently to make mines around the world safer by reducing the risks of explosions.

Deep beneath Earth's surface, mining equipment is just like much other modern machinery – computer screens show the operators what's going on. Under ordinary circumstances, glass screens would be ideal.

But in a mine, "Glass is difficult, because it breaks too easily," says Johannes Koenig, an engineer at German mine-equipment manufacturer Marco Systemanalyse und Entwicklung GmbH.

Plastic screens, though, have a major drawback: they build up a static charge when touched, potentially creating a tiny spark like the one you get when you walk across a carpet then touch a metal door handle. 

In mines, sparks can be disastrous. That's because tunnels filled with clouds of fine coal or are explosions waiting to happen. So screens made of scratch-resistant plastic must be protected in some way.

Marco engineers worked with ESA Technology Transfer Network's MST Aerospace to find a solution. With MST's help, they connected with MAT PlasMATec GmbH in Dresden, Germany, who years ago developed coatings for .

"We saw that the coatings developed by PlasMATec for spacecraft could provide an intelligent solution to Marco's mine problem," saidDr Werner Dupont from MST Aerospace. 

Artist's impression of the ESA-NASA Solar and Heliospheric Observatory (SOHO). Credit: ESA

Space technology gets new life

PlasMATec's experience with stretches back to before the 1989 fall of the Berlin Wall. Engineer Andreas Mucha was part of a Soviet-era team that pioneered indium–tin oxides (ITOs) to coat lenses and windows for spacecraft.

Similar coatings were used later on ESA's SOHO satellite for thermal control of the payload pointing towards the Sun, and on Galileo's laser retroreflector array.

Now used in everything from and touch panels to , ITOs and can be applied to surfaces as a transparent, thin layer.

The aerospace use of the technique was first developed for a space camera built by Karl Zeiss Jena for the Soviet space programme. In 1976, the Soyuz-22 manned spacecraft carrying the East German MKF-6 multispectral sensor camera spent eight days in orbit, taking nearly 2500 pictures of Earth. Later, another MKF-6 camera was mounted on Russia's Mir space station.

Dr Mucha and his colleagues coated the MKF-6 lens with a very thin layer of ITO – just a few hundred nanometres thick – to give it a tiny bit of electromagnetic resistance. In space, the coating allowed the lens to be heated slightly via an electric current, to prevent condensation.

Russia’s Mir space station seen from Space Shuttle Atlantis during the approach for docking on 15 January 1997. Credit: NASA

Space experience was the right solution

PlasMATec's experience from Mir helped them to repurpose the transparent layer of and tin for Marco's mining equipment.

"We coated their polycarbonate screens with basically the same conductive iridium–tin oxide layer we once developed for the lens of the MKF-6 space camera," explained Dr Mucha.

The conductive coating prevents electrostatic charge from building up on the screen, in turn banishing sparks – and preventing underground explosions. 

Longwall mining is a form of underground coal mining where a long wall of coal is mined in a single slice, typically 0.6–1.0 m thick. The longwall panel – the block of coal that is being mined – is typically 3–4 km long and 250–400 m wide. Credit: M. Schweiss/Eickhoff Maschinenfabrik und Eisen/Wikipedia

"A conductive film gives the possibility to have no electrical charging – or sparks – if you brush it with your hands," Dr Mucha said. "It's a different purpose than for space, but the same process."

MST Aerospace is the German partner in ESA's Technology Transfer Network set up by the Agency's Technology Transfer Programme Office in 13 European countries, supporting non-space industry to identify solutions among the thousands of ready available space technologies.

Explore further: Cassini sees sunny seas on Titan

add to favorites email to friend print save as pdf

Related Stories

Mars and the machine

Apr 23, 2013

Without hi-tech magnetic sensors, rovers wouldn't be able to roam around Mars. These same sensors will soon boost terrestrial travel by improving the machinery that moulds parts for cars and aircraft here ...

Researchers inaugurate ultra-fast satellite computer

Aug 08, 2013

One of the quickestand most compact satellite computers in the work was inaugurated today at the University of Stuttgart. The computer is the centrepiece of the ultra-modernsmall satellite platform "Flying ...

Space sensor helps produce 'greener' glass

May 03, 2011

What has making glass in common with space exploration? The special technology to measure oxygen atoms outside space vehicles is now being used in the glass industry to produce super-efficient energy-saving ...

Recommended for you

Cassini sees sunny seas on Titan

17 hours ago

(Phys.org) —As it soared past Saturn's large moon Titan recently, NASA's Cassini spacecraft caught a glimpse of bright sunlight reflecting off hydrocarbon seas.

Is space tourism safe or do civilians risk health effects?

20 hours ago

Several companies are developing spacecraft designed to take ordinary citizens, not astronauts, on short trips into space. "Space tourism" and short periods of weightlessness appear to be safe for most individuals ...

An unmanned rocket exploded. So what?

23 hours ago

Sputnik was launched more than 50 years ago. Since then we have seen missions launched to Mercury, Mars and to all the planets within the solar system. We have sent a dozen men to the moon and many more to ...

NASA image: Sunrise from the International Space Station

Oct 30, 2014

NASA astronaut Reid Wiseman posted this image of a sunrise, captured from the International Space Station, to social media on Oct. 29, 2014. Wiseman wrote, "Not every day is easy. Yesterday was a tough one. ...

Copernicus operations secured until 2021

Oct 30, 2014

In a landmark agreement for Europe's Copernicus programme, the European Commission and ESA have signed an Agreement of over €3 billion to manage and implement the Copernicus 'space component' between 2014 ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.