Predictive model a step toward using bacteria as a renewable fuel source

Sep 18, 2013
A new transcriptomics-based model that accurately predicts how much isoprene the bacterium Bacillus subtilis will produce is a step toward using bacteria as a clean, renewable fuel source.

A new transcriptomics-based model accurately predicts how much isoprene the bacterium Bacillus subtilis will produce when stressed or nourished. This model marks a step toward understanding how changes in the bacteria's environment affect gene expression and, in turn, isoprene production. Isoprene is a volatile liquid currently derived from oil that is used for aviation fuel and industrial applications.

Potentially, isoprene could be derived from bacteria which, like plant and animal cells, produce it in small amounts to serve important signaling and structural roles. With an eye toward maximizing isoprene production in bacteria, a team of EMSL staff and users sought to understand isoprene regulation in B. subtilis, a bacterium that naturally produces more isoprene than other microbes.

The team treated B. subtilis with 30 different chemical stressors and nutrients that alter isoprene production and then analyzed the expression of over 4100 genes. Transcriptomics data showed that of the 4100 genes, 213 genes influenced, or regulated, isoprene production. With these 213 genes, the team built a that accurately predicts isoprene production levels in B. subtilis under different conditions, indicating that transcriptomics measurements alone can provide the necessary information to understand what cellular states are conducive to making isoprene.

This fundamental insight into isoprene regulation in bacteria is helping advance synthetic biology approaches to engineer microbes to produce isoprene as well as other high-value metabolites.

Explore further: Researchers discover new strategy germs use to invade cells

More information: Hess, B. et al. 2013. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics, PLOS ONE 8(6):e66104. DOI: 10.1371/journal.pone.0066104

add to favorites email to friend print save as pdf

Related Stories

Vital role for bacteria in climate-change gas cycle

Mar 29, 2010

Isoprene is a Jekyll-and-Hyde gas that is capable of both warming and cooling the Earth depending on the prevailing conditions. It is an important industrial gas, necessary for the manufacture of important ...

Plant body clock observed in tropical forest research

Sep 26, 2011

(PhysOrg.com) -- Predictions of the ground-level pollutant ozone will be more accurate in future according to research published today by environment scientists at research centres including the University of Birmingham in ...

Recommended for you

Researchers discover new strategy germs use to invade cells

3 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

3 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0