Predictive model a step toward using bacteria as a renewable fuel source

Sep 18, 2013
A new transcriptomics-based model that accurately predicts how much isoprene the bacterium Bacillus subtilis will produce is a step toward using bacteria as a clean, renewable fuel source.

A new transcriptomics-based model accurately predicts how much isoprene the bacterium Bacillus subtilis will produce when stressed or nourished. This model marks a step toward understanding how changes in the bacteria's environment affect gene expression and, in turn, isoprene production. Isoprene is a volatile liquid currently derived from oil that is used for aviation fuel and industrial applications.

Potentially, isoprene could be derived from bacteria which, like plant and animal cells, produce it in small amounts to serve important signaling and structural roles. With an eye toward maximizing isoprene production in bacteria, a team of EMSL staff and users sought to understand isoprene regulation in B. subtilis, a bacterium that naturally produces more isoprene than other microbes.

The team treated B. subtilis with 30 different chemical stressors and nutrients that alter isoprene production and then analyzed the expression of over 4100 genes. Transcriptomics data showed that of the 4100 genes, 213 genes influenced, or regulated, isoprene production. With these 213 genes, the team built a that accurately predicts isoprene production levels in B. subtilis under different conditions, indicating that transcriptomics measurements alone can provide the necessary information to understand what cellular states are conducive to making isoprene.

This fundamental insight into isoprene regulation in bacteria is helping advance synthetic biology approaches to engineer microbes to produce isoprene as well as other high-value metabolites.

Explore further: Fighting bacteria—with viruses

More information: Hess, B. et al. 2013. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics, PLOS ONE 8(6):e66104. DOI: 10.1371/journal.pone.0066104

add to favorites email to friend print save as pdf

Related Stories

Vital role for bacteria in climate-change gas cycle

Mar 29, 2010

Isoprene is a Jekyll-and-Hyde gas that is capable of both warming and cooling the Earth depending on the prevailing conditions. It is an important industrial gas, necessary for the manufacture of important ...

Plant body clock observed in tropical forest research

Sep 26, 2011

(PhysOrg.com) -- Predictions of the ground-level pollutant ozone will be more accurate in future according to research published today by environment scientists at research centres including the University of Birmingham in ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

User comments : 0