Researchers develop artificial surfaces insects cannot stick to

September 24, 2013

Beetles, cockroaches, and ants will have a harder time walking on facades or air conditioners in the future - thanks to the bio-inspired, anti-adhesive surfaces Prof. Dr. Thomas Speck, Dr. Bettina Prüm, and Dr. Holger Bohn are developing together with the Plant Biomechanics Group of the University of Freiburg. The team studied plant surfaces in order to determine what influence cell form and microstructure as well as surface chemistry exert on the adhesion behavior of insects.

The researchers conducted adhesion experiments in which Colorado potato beetles walked across differently structured plant surfaces as well as replicas made of synthetic resins. The team used a highly sensitive sensor to measure the traction forces of the beetles on various surfaces. They discovered that wavy or strongly curved cells can increase the adhesive powers of beetles, whereas composed of wax crystals or cuticular folds reduce them. The latter are tiny folds in the cuticle, a protective layer on the surface of the leaf resembling polyester. The beetles had the hardest time walking on surfaces with cuticular folds with a height and width of approximately 0.5 micrometers and a spacing of between 0.5 and 1.5 micrometers. "That is the perfect anti-adhesion surface. The insects slip off of it much easier than off glass," says project director Thomas Speck. The cuticular folds reduce the contact area between the adhesive hairs on the beetles' legs and the plant surface. Unlike on more coarsely structured surfaces, the beetle can't dig its feet firmly into the cuticular folds. Thus, the microstructure of the surface has a stronger effect on the adhesion of the beetle than the cell form.

The team also took measurements to investigate the of the various surfaces. The researchers used hydrophobic and hydrophilic artificial moldings of the microstructured in order to study the influence of the surface chemistry on surface wettability and the beetles' walking behavior. Much like wax crystals, cuticular folds are very good at repelling water. In contrast to the wettability, which depends on both the microstructure and the surface chemistry, the walking behavior of the is not influenced by the . This means that the beetle's adhesive power depends solely on the physical microstructure of the .

Speck and his team published their findings in the current issue of the journal Acta Biomaterialia. In the future, the anti-adhesion surfaces could be used to line the ventilation pipes of air conditioners, which are often teeming with cockroaches and other insects. In addition, they could also be applied to facades and window frames to prevent insects that move predominantly by walking from entering the house and invading the cupboard and medicine cabinet. "This aspect is particularly important in the tropics," says Speck.

The fundamental biological research on anti-adhesion surfaces will be conducted from now on at the Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), where the researchers will also press ahead with the material development and begin constructing a prototype. "We also want to collaborate with our colleagues at FIT to make the artificial surfaces adaptable to the hair structure of different groups of insects, for instance by means of stretching or shrinking," explains the project director.

Explore further: Nature helps to solve a sticky problem

More information: Prum, B. et al. (2013): Microscopical surface roughness: a relevant factor for slipperiness of plant surfaces with cuticular folds and their replica, Acta Biomaterialia, 9: 6360 - 6368.

Related Stories

Nature helps to solve a sticky problem

April 5, 2011

The arrays of fine adhesive hairs or 'setae' on the foot pads of many insects, lizards and spiders give them the ability to climb almost any natural surface. Research by James Bullock and Walter Federle from the University ...

Geckos keep firm grip in wet natural habitat

April 1, 2013

(Phys.org) —Geckos' ability to stick to trees and leaves during rainforest downpours has fascinated scientists for decades, leading a group of University of Akron researchers to solve the mystery.

Beetles in rubber boots: Scientists study ladybirds' feet

August 15, 2013

During their evolution, insects have developed various unique features to survive in their environment. The knowledge of the working principles of insects' microstructures holds great potential for the development of new ...

Microbes help beetles defeat plant defenses

September 9, 2013

Some symbiotic bacteria living inside Colorado potato beetles can trick plants into reacting to a microbial attack rather than that of a chewing herbivore, according to a team of Penn State researchers who found that the ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.